FlipIt for College Physics (Algebra Version - Six Months Access)
FlipIt for College Physics (Algebra Version - Six Months Access)
17th Edition
ISBN: 9781319032432
Author: Todd Ruskell
Publisher: W.H. Freeman & Co
bartleby

Concept explainers

Question
Book Icon
Chapter 25, Problem 41QAP
To determine

(a)

How much time would light, moving at speed c, need to travel from the partially silvered plate to one mirror and back again, suppose that the distance in the Michelson-Morley experiment from the partially silvered plate to either mirror is 20,000 m?

Expert Solution
Check Mark

Explanation of Solution

Given info:

Formula used:

Calculation:

The Michelson−Morley experiment attempted to measure a difference between light travel times in two perpendicular legs of an interferometer: One leg was situated parallel to the ether wind and the other perpendicular to the ether wind. For the "parallel leg" of the interferometer, we need to calculate the speed of the light traveling with the wind and against the wind; the round-trip time on this leg is equal to the sum of the times of each one-way trip. For the "perpendicular leg," we need to calculate the component of the speed of light that lies along this axis; this speed will be the same for both portions of the one-way trip. Subtracting these two expressions for the travel times-the times for the "parallel leg" and the "perpendicular leg"-will give us an expression for the time difference between the legs in terms of the speed of the ether wind. Using this, we can calculate the time difference if the speed of the ether wind were equal to the orbital speed of Earth around the Sun, 0.01c, 0.1c, 0.5c, and 0.9c.
Parallel time:

tparallel=Lc+v+Lcv=L(cv+c+v)(c+v)(cv)=2Lcc2v2=2Lc(1 ( v c )2)=2Lγ2c

Perpendicular time:

tpeprpendicular=Lc2v2+Lc2v2=2Lc2v2=2Lc1 ( v c )2=2Lγc

Time difference between legs:

tparalleltpeprpendicular=2Lγ2c2Lγc=2Lγc(γ1)=2×200003× 108γ(γ1)tparalleltpeprpendicular=133γ(γ1)μs

Speed:

v=2π×1.5×1011365×24×60×60=2.99×104m/s

Gamma:

γ=11 ( v c )2=11 ( v c )2=11 ( 2.99× 10 4 3× 10 8 )2=1.000000005

Time difference between legs:

tparalleltpeprpendicular=133×1.000000005×(1.0000000051)=7×107μs

Conclusion:

Time difference between legs =7×107μs

To determine

(b)

How much additional time would be required if the ether existed, if the Galilean velocity transformation were valid, and if Earth moved relative to the ether along the direction from the partially silvered plate to this mirror at speed at 0.01c?

Expert Solution
Check Mark

Explanation of Solution

Given info:

Formula used:

Calculation:

Gamma:

γ=11 ( v c )2=11 ( v c )2=11 ( 0.01c c )2=1.00005

Time difference between legs:

tparalleltpeprpendicular=133×1.00005×(1.000051)=7×103μs

Conclusion:

Time difference between legs =7×103μs

To determine

(c)

How much additional time would be required if the ether existed, if the Galilean velocity transformation were valid, and if Earth moved relative to the ether along the direction from the partially silvered plate to this mirror at speed at 0.1c?

Expert Solution
Check Mark

Explanation of Solution

Given info:

Formula used:

Calculation:

Gamma:

γ=11 ( v c )2=11 ( v c )2=11 ( 0.1c c )2=1.005

Time difference between legs:

tparalleltpeprpendicular=133×1.005×(1.0051)=0.7μs

Conclusion:

Time difference between legs =0.7μs

To determine

(d)

How much additional time would be required if the ether existed, if the Galilean velocity transformation were valid, and if Earth moved relative to the ether along the direction from the partially silvered plate to this mirror at speed at 0.5c?

Expert Solution
Check Mark

Explanation of Solution

Given info:

Formula used:

Calculation:

Gamma:

γ=11 ( v c )2=11 ( v c )2=11 ( 0.5c c )2=1.155

Time difference between legs:

tparalleltpeprpendicular=133×1.155×(1.1551)=20μs

Conclusion:

Time difference between legs =20μs

To determine

(e)

How much additional time would be required if the ether existed, if the Galilean velocity transformation were valid, and if Earth moved relative to the ether along the direction from the partially silvered plate to this mirror at speed at 0.9c?

Expert Solution
Check Mark

Explanation of Solution

Given info:

Formula used:

Calculation:

Gamma:

γ=11 ( v c )2=11 ( v c )2=11 ( 0.9c c )2=2.294

Time difference between legs:

tparalleltpeprpendicular=133×2.294×(2.2941)=400μs

Conclusion:

Time difference between legs =400μs

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
??!!
rections: For problem rough 3, read each question carefully and be sure to show all work. 1. Determine if 9(4a²-4ab+b²) = (6a-3b)² is a polynomial identity. 2. Is (2x-y) (8x3+ y³) equivalent to 16x4-y4? 3. Find an expression that is equivalent to (a - b)³. Directions: For problems 4 and 5, algebraically prove that the following equations are polynomial identities. Show all of your work and explain each step. 4. (2x+5)² = 4x(x+5)+25 5. (4x+6y)(x-2y)=2(2x²-xy-6y²)
Name: Mussels & bem A section of a river currently has a population of 20 zebra mussels. The population of zebra mussels increases 60 % each month. What will be the population of zebra mussels after 2 years? 9 10 # of months # of mussels 1 2 3 4 5 6 7 8 o Graph your data. Remember to title your graph. What scale should be used on the y-axis? What scale should be used on the x-axis? Exponential Growth Equation y = a(1+r)*

Chapter 25 Solutions

FlipIt for College Physics (Algebra Version - Six Months Access)

Ch. 25 - Prob. 11QAPCh. 25 - Prob. 12QAPCh. 25 - Prob. 13QAPCh. 25 - Prob. 14QAPCh. 25 - Prob. 15QAPCh. 25 - Prob. 16QAPCh. 25 - Prob. 17QAPCh. 25 - Prob. 18QAPCh. 25 - Prob. 19QAPCh. 25 - Prob. 20QAPCh. 25 - Prob. 21QAPCh. 25 - Prob. 22QAPCh. 25 - Prob. 23QAPCh. 25 - Prob. 24QAPCh. 25 - Prob. 25QAPCh. 25 - Prob. 26QAPCh. 25 - Prob. 27QAPCh. 25 - Prob. 28QAPCh. 25 - Prob. 29QAPCh. 25 - Prob. 30QAPCh. 25 - Prob. 31QAPCh. 25 - Prob. 32QAPCh. 25 - Prob. 33QAPCh. 25 - Prob. 34QAPCh. 25 - Prob. 35QAPCh. 25 - Prob. 36QAPCh. 25 - Prob. 37QAPCh. 25 - Prob. 38QAPCh. 25 - Prob. 39QAPCh. 25 - Prob. 40QAPCh. 25 - Prob. 41QAPCh. 25 - Prob. 42QAPCh. 25 - Prob. 43QAPCh. 25 - Prob. 44QAPCh. 25 - Prob. 45QAPCh. 25 - Prob. 46QAPCh. 25 - Prob. 47QAPCh. 25 - Prob. 48QAPCh. 25 - Prob. 49QAPCh. 25 - Prob. 50QAPCh. 25 - Prob. 51QAPCh. 25 - Prob. 52QAPCh. 25 - Prob. 53QAPCh. 25 - Prob. 54QAPCh. 25 - Prob. 55QAPCh. 25 - Prob. 56QAPCh. 25 - Prob. 57QAPCh. 25 - Prob. 58QAPCh. 25 - Prob. 59QAPCh. 25 - Prob. 60QAPCh. 25 - Prob. 61QAPCh. 25 - Prob. 62QAPCh. 25 - Prob. 63QAPCh. 25 - Prob. 64QAPCh. 25 - Prob. 65QAPCh. 25 - Prob. 66QAPCh. 25 - Prob. 67QAPCh. 25 - Prob. 68QAPCh. 25 - Prob. 69QAPCh. 25 - Prob. 70QAPCh. 25 - Prob. 71QAPCh. 25 - Prob. 72QAPCh. 25 - Prob. 73QAPCh. 25 - Prob. 74QAPCh. 25 - Prob. 75QAPCh. 25 - Prob. 76QAPCh. 25 - Prob. 77QAPCh. 25 - Prob. 78QAPCh. 25 - Prob. 79QAPCh. 25 - Prob. 80QAPCh. 25 - Prob. 81QAPCh. 25 - Prob. 82QAPCh. 25 - Prob. 83QAPCh. 25 - Prob. 84QAPCh. 25 - Prob. 85QAPCh. 25 - Prob. 86QAPCh. 25 - Prob. 87QAPCh. 25 - Prob. 88QAPCh. 25 - Prob. 89QAPCh. 25 - Prob. 90QAP
Knowledge Booster
Background pattern image
Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,