(a)
Interpretation:
For the formation of
Concept introduction:
Gibb’s free energy: The relationship between temperature and
To calculate: Gibb’s free energy change for the formation of
(a)
Answer to Problem 25.39QP
Gibb’s free energy change for the given reaction
Explanation of Solution
Formation reaction of
Given that, Gibb’s free energy change of the reaction at 298 K
General equation for calculation of Gibb’s free energy change of the given reaction
Apply the formula for the given reaction
Substances in elemental form (here oxygen and nitrogen molecule) have Gibb’s free energy of formation value is zero.
Gibb’s free energy change for the formation of
Gibb’s free energy change for the formation of
(b)
Interpretation:
For the formation of
Concept introduction:
Gibb’s free energy: The relationship between temperature and thermodynamic properties like enthalpy and entropy is given by Gibb’s free energy. Based on the value of Gibb’s free energy the feasibility of reactions can be explained.
To calculate: The
(b)
Answer to Problem 25.39QP
For the given reaction, value of
Explanation of Solution
The relationship between
Substitute the values of
By the use of relationship between
(c)
Interpretation:
For the formation of
Concept introduction:
Gibb’s free energy: The relationship between temperature and thermodynamic properties like enthalpy and entropy is given by Gibb’s free energy. Based on the value of Gibb’s free energy the feasibility of reactions can be explained.
To calculate: The
(c)
Answer to Problem 25.39QP
For the given reaction value of
Explanation of Solution
The relationship between
Here no change in number of moles, therefore,
By the use of relationship between
Want to see more full solutions like this?
Chapter 25 Solutions
GEN COMBO CHEMISTRY: ATOMS FIRST; ALEKS 360 2S ACCESS CARD CHEMISTRY:ATOMS FIRST
- Zeroth Order Reaction In a certain experiment the decomposition of hydrogen iodide on finely divided gold is zeroth order with respect to HI. 2HI(g) Au H2(g) + 12(9) Rate = -d[HI]/dt k = 2.00x104 mol L-1 s-1 If the experiment has an initial HI concentration of 0.460 mol/L, what is the concentration of HI after 28.0 minutes? 1 pts Submit Answer Tries 0/5 How long will it take for all of the HI to decompose? 1 pts Submit Answer Tries 0/5 What is the rate of formation of H2 16.0 minutes after the reaction is initiated? 1 pts Submit Answer Tries 0/5arrow_forwardangelarodriguezmunoz149@gmail.com Hi i need help with this question i am not sure what the right answers are.arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Don't used hand raitingarrow_forwardDon't used Ai solutionarrow_forwardSaved v Question: I've done both of the graphs and generated an equation from excel, I just need help explaining A-B. Below is just the information I used to get the graphs obtain the graph please help. Prepare two graphs, the first with the percent transmission on the vertical axis and concentration on the horizontal axis and the second with absorption on the vertical axis and concentration on the horizontal axis. Solution # Unknown Concentration (mol/L) Transmittance Absorption 9.88x101 635 0.17 1.98x101 47% 0.33 2.95x101 31% 0.51 3.95x10 21% 0.68 4.94x10 14% 24% 0.85 0.62 A.) Give an equation that relates either the % transmission or the absorption to the concentration. Explain how you arrived at your equation. B.) What is the relationship between the percent transmission and the absorption? C.) Determine the concentration of the ironlll) salicylate in the unknown directly from the graph and from the best fit trend-line (least squares analysis) of the graph that yielded a straight…arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning