In 1911, Ernest Rutherford and his assistants Geiger and Marsden conducted an experiment in which they scattered alpha particles (nuclei of helium atoms) from thin sheets of gold. An alpha particle, having charge +2 e and mass 6.64 × 10 -27 kg, is a product of certain radioactive decay's. The results of the experiment led Rutherford to the idea that most of an atom’s mass is in a very small nucleus, with electrons in orbit around it. (This is the planetary model of the atom, which we’ll study in Chapter 42.) Assume an alpha particle, initially very far from a stationary gold nucleus, is fired with a velocity of 2.00 × 10 7 m/s directly toward the nucleus (charge +79 e ). What is the smallest distance between the alpha particle and the nucleus before the alpha particle reverses direction? Assume the gold nucleus remains stationary.
In 1911, Ernest Rutherford and his assistants Geiger and Marsden conducted an experiment in which they scattered alpha particles (nuclei of helium atoms) from thin sheets of gold. An alpha particle, having charge +2 e and mass 6.64 × 10 -27 kg, is a product of certain radioactive decay's. The results of the experiment led Rutherford to the idea that most of an atom’s mass is in a very small nucleus, with electrons in orbit around it. (This is the planetary model of the atom, which we’ll study in Chapter 42.) Assume an alpha particle, initially very far from a stationary gold nucleus, is fired with a velocity of 2.00 × 10 7 m/s directly toward the nucleus (charge +79 e ). What is the smallest distance between the alpha particle and the nucleus before the alpha particle reverses direction? Assume the gold nucleus remains stationary.
In 1911, Ernest Rutherford and his assistants Geiger and Marsden conducted an experiment in which they scattered alpha particles (nuclei of helium atoms) from thin sheets of gold. An alpha particle, having charge +2e and mass 6.64 × 10-27 kg, is a product of certain radioactive decay's. The results of the experiment led Rutherford to the idea that most of an atom’s mass is in a very small nucleus, with electrons in orbit around it. (This is the planetary model of the atom, which we’ll study in Chapter 42.) Assume an alpha particle, initially very far from a stationary gold nucleus, is fired with a velocity of 2.00 × 107 m/s directly toward the nucleus (charge +79e). What is the smallest distance between the alpha particle and the nucleus before the alpha particle reverses direction? Assume the gold nucleus remains stationary.
If a proton is located on the x-axis in some coordinate system at x0 = -3.2 x 10-5 meters, what is the x-component of the Electric Field due to this proton at a position x = +3.2 x 10-5 meters and on the x axis as the y-axis is 0 giving a number of Newtons/Coulomb?
Consider a single square loop of wire of area A carrying a current I in a uniform magnetic field
of strength B. The field is pointing directly up the page in the plane of the page. The loop is
oriented so that the plane of the loop is perpendicular to the plane of the page (this means that the
normal vector for the loop is always in the plane of the page!). In the illustrations below the
magnetic field is shown in red and the current through the current loop is shown in blue. The
loop starts out in orientation (i) and rotates clockwise, through
orientations (ii) through (viii)
before returning to (i).
(i)
Ø I N - - I N -
(iii)
(iv)
(v)
(vii)
(viii)
a) [3 points] For each of the eight configurations, draw in the magnetic dipole moment vector
μ of the current loop and indicate whether the torque on the dipole due to the magnetic field
is clockwise (CW), counterclockwise (CCW), or zero. In which two orientations will the
loop experience the maximum magnitude of torque?
[Hint: Use the…
Please help with calculating the impusle, thanks!
Having calculated the impact and rebound velocities of the ping pong ball and the tennis ball calculate the rebounding impulse:
1.Measure the weight of the balls and determine their mass.
Tennis ball: 0.57 kg Ping Pong Ball: 0.00246 kg
The impulse, I, is equal to the change in momentum, Pf-Pi. Note the sign change, i.e., going down is negative and up is positive. The unit for momentum is kg-m/s. The change is momentum, impulse, is often givens the equivalent unit of N-S, Newton-Second
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.