INSTRUMENTAL ANALYSIS-ACCESS >CUSTOM<
INSTRUMENTAL ANALYSIS-ACCESS >CUSTOM<
7th Edition
ISBN: 9781337783439
Author: Skoog
Publisher: CENGAGE C
Question
Book Icon
Chapter 25, Problem 25.15QAP
Interpretation Introduction

(a)

Interpretation:

The surface area should be determined in cm2, neglecting the area of the nanotube attachment.

Concept introduction:

Surface area of a sphere = 4πr2

r = radius of the sphere.

Expert Solution
Check Mark

Answer to Problem 25.15QAP

1.92×1012 cm2

Explanation of Solution

Using formula:

Surface area of a sphere = 4πr2

Substituting the values:

A=4×227×(3.91×107 cm)2A=1.92×1012 cm2

Interpretation Introduction

(b)

Interpretation:

The concentration gradient and the current for A at a concentration of 1.00 mM at different times should be calculated.

Concept introduction:

cAx=cA0(1πDt+1r)

cAx - concentration gradient

cA0 - concentration of A

D − diffusion coefficient

t- time after the voltage is applied

r − radius of the sphere

i=nFADcA0(1πDt+1r)

i − time dependent faradaic current

n − number of moles of electrode

F − Faraday constant

A − surface area

D − diffusion coefficient

cA0 - concentration of A

t- time after the voltage is applied

r − radius of the sphere

Expert Solution
Check Mark

Answer to Problem 25.15QAP

t, s Concentration gradient I, A
1.00E-08 4.55E+05 6.75E-15
1.00E-07 3.19E+05 4.73E-15
1.00E-06 2.76E+05 4.09E-15
1.00E-05 2.62E+05 3.88E-15
1.00E-04 2.58E+05 3.82E-15
1.00E-03 2.56E+05 3.80E-15
1.00E-02 2.56E+05 3.79E-15
1.00E-01 2.56E+05 3.79E-15
1.00E+00 2.56E+05 3.79E-15
1.00E+01 2.56E+05 3.79E-15

Explanation of Solution

When the time is 1×108 s

cAx=1.00×103 M(13.14×8×1010 m2/s×1×108 s+13.91×109 m)cAx=1.00×103 M(15.01×109 m+13.91×109 m)cAx=1.00×103 M×4.554×108 m1cAx=4.554×105 Mm1

i=1 mol×96485 C/mol×1.92×1016 m2×8×1010 m2/s ×4.554×105 M/mi=6.75×1015 A

Likewise, the other concentration gradients and current can be calculated using a spreadsheet.

t, s d, m 1/d + 1/r Concentration gradient I, A
1.00E-08 5.012E-09 4.55E+08 4.55E+05 6.75E-15
1.00E-07 1.5849E-08 3.19E+08 3.19E+05 4.73E-15
1.00E-06 5.012E-08 2.76E+08 2.76E+05 4.09E-15
1.00E-05 1.5849E-07 2.62E+08 2.62E+05 3.88E-15
1.00E-04 5.012E-07 2.58E+08 2.58E+05 3.82E-15
1.00E-03 1.5849E-06 2.56E+08 2.56E+05 3.80E-15
1.00E-02 5.012E-06 2.56E+08 2.56E+05 3.79E-15
1.00E-01 1.5849E-05 2.56E+08 2.56E+05 3.79E-15
1.00E+00 5.012E-05 2.56E+08 2.56E+05 3.79E-15
1.00E+01 0.00015849 2.56E+08 2.56E+05 3.79E-15
Interpretation Introduction

(c)

Interpretation:

The steady state current should be found

Concept introduction:

If r << d, which occurs at long times, the 1/r term predominates, the electron transfer process reaches a steady state. The steady state current only depends on the size of the electrode.

Expert Solution
Check Mark

Answer to Problem 25.15QAP

i=3.79×1015 A

Explanation of Solution

i=nFADcA0(1r)i=1 mol×96485 C/mol×1.92×1016 m2×8×1010 m2/s×1×103 M×13.91×109 mi=3.79×1015 A

Interpretation Introduction

(d)

Interpretation:

The time required for the electrode to achieve steady state current following the application of the voltage step should be determined.

Concept introduction:

Current should be used for the calculation is 1.01 x steady state value.

cAx=cA0(1πDt+1r)

cAx - concentration gradient

cA0 - concentration of A

D − diffusion coefficient

t- time after the voltage is applied

r − radius of the sphere

i=nFADcA0(1πDt+1r)

i − time dependent faradaic current

n − number of moles of electrode

F − Faraday constant

A − surface area

D − diffusion coefficient

cA0 - concentration of A

t- time after the voltage is applied

r − radius of the sphere

Expert Solution
Check Mark

Answer to Problem 25.15QAP

t=7.9×105 s

Explanation of Solution

i=1.01×3.79×1015 Ai=3.83×1015 A

Using equation,

i=nAFD×GradientGradient=3.83×1015 A1 mol×1.92×1016 m2×96485 C/mol×8×1010 m2/sGradient=2.58×105 M/m

2.58×105 M/m=1×103 M(1πDt+13.91×109 m)2.58×108=(1πDt+13.91×109 m)1πDt=2.246×1061πDt=5.042×101213.14×8×1010×t=5.042×1012t=13.14×8×1010×5.042×1012t=7.9×105 s

Interpretation Introduction

(e)

Interpretation:

The calculations should be repeated for a 3 µm spherical platinum electrode and for a spherical iridium electrode with a surface area of 0.785 mm2

Concept introduction:

The formula used:

cAx=cA0(1πDt+1r)

cAx - concentration gradient

cA0 - concentration of A

D − diffusion coefficient

t- time after the voltage is applied

r − radius of the sphere

i=nFADcA0(1πDt+1r)

i − time dependent faradaic current

n − number of moles of electrode

F − Faraday constant

A − surface area

D − diffusion coefficient

cA0 - concentration of A

t- time after the voltage is applied

r − radius of the sphere

Expert Solution
Check Mark

Answer to Problem 25.15QAP

For platinum electrode with radius of 3 3 µm, time required to achieve steady state is 35.77 s and for iridium electrode with radius of 0.00025 m, time required to achieve steady state is 2.5×105 s

Explanation of Solution

For the spherical platinum electrode area is calculated as:

A=4πr2A=4×3.14×(3×106 m)2A=1.13×1010 m2

Steady state current is calculated as:

i=nFADcA0(1r)i=1 mol×96485 C/mol×1.13×1010 m2×8×1010 m2/s×1×103 M×13×106 mi=2.91×1012 A

i=1.01×2.91×1012 Ai=2.94×1012 A

i=nAFD×GradientGradient=2.94×1012 A1 mol×1.13×1010 m2×96485 C/mol×8×1010 m2/sGradient=336.67 M/m

336.67 M/m=1×103 M(1πDt+13×106 m)336670=(1πDt+13×106 m)1πDt=3336.671πDt=1.113×10713.14×8×1010×t=1.113×107t=13.14×8×1010×1.113×107t=35.77 s

For the spherical iridium electrode,

A=4πr20.785×106 m2=4×3.14×r2r=2.5×104 m2

Steady state current

i=nFADcA0(1r)i=1 mol×96485 C/mol×0.785×106 m2×8×1010 m2/s×1×103 M×12.5×104 mi=2.42×1010 A

i=1.01×2.42×1010 Ai=2.45×1010 A

i=nAFD×GradientGradient=2.45×1010 A1 mol×0.785×106 m2×96485 C/mol×8×1010 m2/sGradient=4.04 M/m

4.04 M/m=1×103 M(1πDt+12.5×104 m)4040=(1πDt+12.5×104 m)1πDt=401πDt=160013.14×8×1010×t=1600t=13.14×8×1010×1600t=2.5×105 s

Interpretation Introduction

(f)

Interpretation:

The results for the three electrodes should be compared and the differences should be discussed.

Expert Solution
Check Mark

Answer to Problem 25.15QAP

When the size of the electrode is higher than the thickness of the Nernst diffusion layer, it takes more time to achieve the steady state.

Explanation of Solution

For platinum electrode with radius of 3 3 µm, time required to achieve steady state is 35.77 s and for iridium electrode with radius of 0.00025 m, time required to achieve steady state is 2.5×105 s. For the nano onion with a radius of 3.91 nm, time required to achieve steady state is t=7.9×105 s under the same conditions. This result indicates that, when the size of the electrode is higher than the thickness of the Nernst diffusion layer, it takes more time to achieve the steady state.

When r <<< d, the 1/r term predominates. The electron transport process reaches the steady state. At this time, steady state current depends only on the size of the electrode. If the size of the electrode is small than the thickness of the Nernst diffusion layer, the steady state is achieved very rapidly.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(a) (i) (ii) (iii) With the aid of a simple schematic, explain what covalent bonding is and how it is formed. What are the differences between a covalent bond and an ionic bond? Which type of bond is found in crystalline silicon? At room temperature do you expect an ionic crystal to be a good electrical conductor or a good electrical insulator? Explain why.
I'm not sure how to solve these questions from the information given. Any help in understanding would be greatly appreciated.  Determine the formulas of the compounds produced by (a) filling a quarter of the tetrahedral holes with cations M in a hexagonal close-packed array of anions x; (B) filling half the octahedral holes with cations M in a cubic close-packed array of anions X; (c) filling a sixth of the tetrahedral holes in a hcp array of M with X.?
The Latimer diagram for nitrogen in acidic solution at 25 °C is shown. Classify each species based on whether it is stable with respect to disproportionation or unstable with respect to disproportionation in acidic solution under standard conditions at 25 °C.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning