Physics for Scientists and Engineers
9th Edition
ISBN: 9781133947271
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 25.14P
The two charges in Figure P25.14 are separated by d = 2.00 cm. Find the electric potential at (a) point .A and (b) point B, which is halfway between the charges.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Point charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.)
(a) Where can a third charge be placed so that the net force on it is zero?
0.49
m to the right of the -2.50 μC charge
(b) What if both charges are positive?
0.49
xm to the right of the 2.50 μC charge
Find the electric field at the location of q, in the figure below, given that q₁ =9c9d = +4.60 nC, q = -1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.)
magnitude
direction
2500
x
What symmetries can you take advantage of? What charges are the same magnitude and the same distance away? N/C
226
×
How does charge sign affect the direction of the electric field? counterclockwise from the +x-axis
9a
9b
%
9
9d
would 0.215 be the answer for part b?
Chapter 25 Solutions
Physics for Scientists and Engineers
Ch. 25 - In Figure 24.1, two points and are located...Ch. 25 - The labeled points in Figure 24.4 are on a series...Ch. 25 - In Figure 24.8b, take q2, to be a negative source...Ch. 25 - In a certain region of space, the electric...Ch. 25 - In a certain region of space, the electric field...Ch. 25 - Consider the equipotential surfaces shown in...Ch. 25 - (i) A metallic sphere A of radius 1.00 cm is...Ch. 25 - The electric potential at x = 3.00 m is 120 V, and...Ch. 25 - Rank the potential energies of the lour systems of...Ch. 25 - In a certain region of space, a uniform electric...
Ch. 25 - Rank the electric potentials at the four points...Ch. 25 - An electron in an x-ray machine is accelerated...Ch. 25 - Rank the electric potential energies of the...Ch. 25 - Four particles are positioned on the rim of a...Ch. 25 - A proton is released from rest at the origin in a...Ch. 25 - A particle with charge -40.0 nC is on the x axis...Ch. 25 - A filament running along the x axis from the...Ch. 25 - In different experimental trials, an electron, a...Ch. 25 - A helium nucleus (charge = 2e. mass = 6.63 ...Ch. 25 - What determines the maximum electric potential to...Ch. 25 - Describe the motion of a proton (a) after it is...Ch. 25 - When charged particles are separated by an...Ch. 25 - Study Figure 23.3 and the accompanying text...Ch. 25 - Distinguish between electric potential and...Ch. 25 - Describe the equipotential surfaces for (a) an...Ch. 25 - Oppositely charged parallel plates are separated...Ch. 25 - A uniform electric field of magnitude 250 V/m is...Ch. 25 - (a) Calculate the speed of a proton that is...Ch. 25 - How much work is done (by a battery, generator, or...Ch. 25 - A uniform electric field of magnitude 325 V/m is...Ch. 25 - Starting with the definition of work, prove that...Ch. 25 - An electron moving parallel to the x axis has an...Ch. 25 - (a) Find the electric potential difference Ve...Ch. 25 - A particle having charge q = +2.00 C and mass m =...Ch. 25 - Review. A block having mass m and charge + Q is...Ch. 25 - An insulating rod having linear charge density =...Ch. 25 - (a) Calculate the electric potential 0.250 cm from...Ch. 25 - Two point charges are on the y axis. A 4.50-C...Ch. 25 - The two charges in Figure P25.14 are separated by...Ch. 25 - Three positive charges are located at the corners...Ch. 25 - Two point charges Q1 = +5.00 nC and Q2 = 3.00 nC...Ch. 25 - Two particles, with charges of 20.0 11C and -20.0...Ch. 25 - The two charges in Figure P24.12 are separated by...Ch. 25 - Given two particles with 2.00-C charges as shown...Ch. 25 - At a certain distance from a charged particle, the...Ch. 25 - Four point charges each having charge Q are...Ch. 25 - The three charged particles in Figure P25.22 are...Ch. 25 - A particle with charge +q is at the origin. A...Ch. 25 - Show that the amount of work required to assemble...Ch. 25 - Two particles each with charge +2.00 C are located...Ch. 25 - Two charged particles of equal magnitude are...Ch. 25 - Four identical charged particles (q = +10.0 C) are...Ch. 25 - Three particles with equal positive charges q are...Ch. 25 - Five particles with equal negative charges q are...Ch. 25 - Review. A light, unstressed spring has length d....Ch. 25 - Review. Two insulating spheres have radii 0.300 cm...Ch. 25 - Review. Two insulating spheres have radii r1 and...Ch. 25 - How much work is required to assemble eight...Ch. 25 - Four identical particles, each having charge q and...Ch. 25 - In 1911, Ernest Rutherford and his assistants...Ch. 25 - Figure P24.22 represents a graph of the electric...Ch. 25 - The potential in a region between x = 0 and x =...Ch. 25 - An electric field in a region of space is parallel...Ch. 25 - Over a certain region of space, the electric...Ch. 25 - Figure P24.23 shows several equipotential lines,...Ch. 25 - The electric potential inside a charged spherical...Ch. 25 - It is shown in Example 24.7 that the potential at...Ch. 25 - Consider a ring of radius R with the total charge...Ch. 25 - A uniformly charged insulating rod of length 14.0...Ch. 25 - A rod of length L (Fig. P24.25) lies along the x...Ch. 25 - For the arrangement described in Problem 25,...Ch. 25 - A wire having a uniform linear charge density is...Ch. 25 - The electric field magnitude on the surface of an...Ch. 25 - How many electrons should be removed from an...Ch. 25 - A spherical conductor has a radius of 14.0 cm and...Ch. 25 - Electric charge can accumulate on an airplane in...Ch. 25 - Lightning can be studied with a Van de Graaff...Ch. 25 - Why is the following situation impossible? In the...Ch. 25 - Review. In fair weather, the electric field in the...Ch. 25 - Review. From a large distance away, a particle of...Ch. 25 - Review. From a large distance away, a particle of...Ch. 25 - The liquid-drop model of the atomic nucleus...Ch. 25 - On a dry winter day, you scuff your leather-soled...Ch. 25 - The electric potential immediately outside a...Ch. 25 - (a) Use the exact result from Example 24.4 to find...Ch. 25 - Calculate the work that must be done on charges...Ch. 25 - Calculate the work that must be done on charges...Ch. 25 - The electric potential everywhere on the xy plane...Ch. 25 - Why is the following situation impossible? You set...Ch. 25 - From Gauss's law, the electric field set up by a...Ch. 25 - A uniformly charged filament lies along the x axis...Ch. 25 - The thin, uniformly charged rod shown in Figure...Ch. 25 - A GeigerMueller tube is a radiation detector that...Ch. 25 - Review. Two parallel plates having charges of...Ch. 25 - When an uncharged conducting sphere of radius a is...Ch. 25 - An electric dipole is located along the y axis as...Ch. 25 - A solid sphere of radius R has a uniform charge...Ch. 25 - A disk of radius R (Fig. P24.49) has a nonuniform...Ch. 25 - Four balls, each with mass m, are connected by...Ch. 25 - (a) A uniformly charged cylindrical shell with no...Ch. 25 - As shown in Figure P25.76, two large, parallel,...Ch. 25 - A particle with charge q is located at x = R, and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose a toy boat moves in a pool at at a speed given by v=1.0 meter per second at t=0, and that the boat is subject to viscous damping. The damping on the boat causes the rate of speed loss to be given by the expression dv/dt=-2v. How fast will the boat be traveling after 1 second? 3 seconds? 10 seconds? Use separation of variables to solve this.arrow_forwardWhat functional form do you expect to describe the motion of a vibrating membrane without damping and why?arrow_forwardIf speed is tripled, how much larger will air drag become for an object? Show the math.arrow_forward
- What does it tell us about factors on which air drag depends if it is proportional to speed squared?arrow_forwardWhat is the net charge on a sphere that has the following? x (a) 5.75 × 106 electrons and 8.49 × 106 protons 4.39e-13 What is the charge of an electron? What is the charge of a proton? C (b) 200 electrons and 109 protons 1.60e-10 What is the charge of an electron? What is the charge of a proton? Carrow_forwardA spider begins to spin a web by first hanging from a ceiling by his fine, silk fiber. He has a mass of 0.025 kg and a charge of 3.5 μC. A second spider with a charge of 4.2 μC rests in her own web exactly 2.1 m vertically below the first spider. (a) What is the magnitude of the electric field due to the charge on the second spider at the position of the first spider? 8.57e3 N/C (b) What is the tension in the silk fiber above the first spider? 0.125 How does the electric field relate to the force? How do you calculate the net force? Narrow_forward
- Point charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? 0.49 m to the right of the -2.50 μC charge (b) What if both charges are positive? 0.185 xm to the right of the 2.50 μC chargearrow_forwardc = ad Find the electric field at the location of q, in the figure below, given that q₁ = 9₁ = 9₁ = +4.60 nC, q=-1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.) magnitude direction N/C ° counterclockwise from the +x-axis 9a % 9 9barrow_forwardPlastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between q₁ and 93. The sum of the charge on 9₁ and 92 is 9₁ + 92 = −2.9 µС, and the net charge of the system of all three beads is zero. E field lines 93 92 What charge does each bead carry? 91 92 -1.45 What is the net charge of the system? What charges have to be equal? μC 2.9 ✓ What is the net charge of the system? What charges have to be equal? μC 93 2.9 μεarrow_forward
- A spider begins to spin a web by first hanging from a ceiling by his fine, silk fiber. He has a mass of 0.025 kg and a charge of 3.5 μC. A second spider with a charge of 4.2 μC rests in her own web exactly 2.1 m vertically below the first spider. (a) What is the magnitude of the electric field due to the charge on the second spider at the position of the first spider? 8.57e3 N/C (b) What is the tension in the silk fiber above the first spider? 0.275 How does the electric field relate to the force? How do you calculate the net force? Narrow_forwardPlastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between 91 system of all three beads is zero. E field lines 91 92 93 X What charge does each bead carry? 91 = 92 = ?2.9 0 μC × What is the net charge of the system? What charges have to be equal? μC 93 2.9 με and 93. The sum of the charge on 91 and 92 is 91 +92 = -2.9 μC, and the net charge of thearrow_forwardAn electron has an initial speed of 5.26 x 100 m/s in a uniform 5.73 x 105 N/C strength electric field. The field accelerates the electron in the direction opposite to its initial velocity. (a) What is the direction of the electric field? opposite direction to the electron's initial velocity same direction as the electron's initial velocity not enough information to decide × What is the direction of the force on the electron? How does it compare to the direction of the electric field, considering the sign of the electron's charge? (b) How far does the electron travel before coming to rest? 0.0781 × What kinematic equation is relevant here? How do you calculate the force due to the electric field? m (c) How long does it take the electron to come to rest? 5.27e8 What is the final velocity of the electron? s (d) What is the electron's speed when it returns to its starting point? 5.26e6 m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY