Concept explainers
Consider two
(a)

To show: The energy associated with a single conducting sphere is
Answer to Problem 23P
Explanation of Solution
Given info: The radii of two conducting sphere is
Write the expression to calculate the capacitance of a sphere of radius
Here,
Write the expression to calculate the potential difference.
Here,
Write the expression to calculate the energy stored in the capacitor.
Substitute
Conclusion:
Therefore, the energy associated with a single conducting sphere is
(b)

Answer to Problem 23P
Explanation of Solution
Given info: The radii of two conducting sphere is
Write the expression to calculate the capacitance of a sphere of radius
Write the expression to calculate the total energy of the system of two sphere.
Substitute
The sum of charge of both sphere are,
Substitute
Thus, the total energy of the system of two spheres in term of
Conclusion:
Therefore, the total energy of the system of two spheres in term of
(c)

Answer to Problem 23P
Explanation of Solution
Given info: The radii of two conducting sphere is
The total energy of the system of two spheres in term of
Differentiate the above equation with respect to
Conclusion:
Therefore, the value of
(d)

Answer to Problem 23P
Explanation of Solution
Given info: The radii of two conducting sphere is
The value of
The sum of charge of both sphere are,
Substitute
Conclusion:
Therefore, the value of
(e)

Answer to Problem 23P
Explanation of Solution
Given info: The radii of two conducting sphere is
Write the expression to calculate the potential of first sphere.
Substitute
Write the expression to calculate the potential of second sphere.
Substitute
Thus, the potential of each sphere is
Conclusion:
Therefore, the potential of each sphere is
(f)

Answer to Problem 23P
Explanation of Solution
Given info: The radii of two conducting sphere is
The potential difference is,
Substitute
Conclusion:
Therefore, the potential difference between the spheres is zero.
Want to see more full solutions like this?
Chapter 25 Solutions
PHYSICS:F/SCI.+ENGRS.(LL)-W/SINGLE CARD
- RT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forwardганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forward
- An infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forwardA small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius cc and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What is the direction of the electric field for b<r<c? Calculate the magnitude of the electric field for c<r<d. Calculate the magnitude of the electric field for r>d.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





