Fundamentals of Corporate Finance
Fundamentals of Corporate Finance
11th Edition
ISBN: 9780077861704
Author: Stephen A. Ross Franco Modigliani Professor of Financial Economics Professor, Randolph W Westerfield Robert R. Dockson Deans Chair in Bus. Admin., Bradford D Jordan Professor
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 25, Problem 22QP

a)

Summary Introduction

To compute: The risk-free bond value.

Introduction:

Value of equity is the amount that comprises of the firm’s capital structure as equity shares. It is the total contribution of the equity shareholders to the firm. Value of debt is the amount that comprises of the firm’s capital structure as debt. It is the total contribution of the debt-holders to the firm.

a)

Expert Solution
Check Mark

Answer to Problem 22QP

The present market of the risk-free bond is $56,375.05.

Explanation of Solution

Given information: Company K has zero coupon bonds with a maturity period of 5 years at $80,000 face value. The present value on the assets of the company is $77,000 and the standard deviation is 34% per year. The risk-free rate is 7% per year.

Formula to calculate PV (Present Value) of risk-free bond:

PV=Eert

Calculate PV (Present Value) of risk-free bond:

PV=Eert=$80,000e0.07(5)=$56,375.05

Hence, PV of risk-free bond is $56,375.05.

b)

Summary Introduction

To compute: The put option value on the assets of the firm.

Introduction:

Value of equity is the amount that comprises of the firm’s capital structure as equity shares. It is the total contribution of the equity shareholders to the firm. Value of debt is the amount that comprises of the firm’s capital structure as debt. It is the total contribution of the debt-holders to the firm.

b)

Expert Solution
Check Mark

Answer to Problem 22QP

The put option value is $10,979.13.

Explanation of Solution

Formula to calculate the delta of the call option:

d1=[ln(SE)+(r+σ22)t]σt

Where,

S is the stock price

E is the exercise price

r is the risk-free rate

σ is the standard deviation

t is the period of maturity

Calculate the delta of the call option:

d1=ln(SE)+(r+σ22)tσt=ln($77,000$80,000)+(0.07+0.3422)×50.34×5=$0.038221212+$0.6390.76026311234992=0.7902

Hence, d1is 0.7902.

N(d1)=0.7853

Note: The cumulative frequency distribution value for 0.7902 is 0.7853.

Hence, the delta for the call option is 0.7853.

Formula to calculate the delta of the put option:

d2=d1σt

Calculate the delta of the put option:

d2=d1σt=0.79020.34×5=0.790276.02631123=0.0300

Hence, d2 is 0.0300.

N(d2)=0.5120

Note: The cumulative frequency distribution value for 0.0300 is 0.5120.

Hence, the delta for the put option is 0.5120.

Formula to calculate the call price or equity using the black-scholes model:

Equity=C=S×N(d1)E×eRt×N(d2)

Where,

S is the stock price

E is the exercise price

klC is the call price

R is the risk-free rate

t is the period of maturity

Calculate the call price or equity:

C=S×N(d1)E×eRt×N(d2)=$77,000×(0.7853)($80,000e0.07(5))(0.5120)=$60,468.1$28,864.02415=$31,604.07585

Hence, the call price or equity is $31,604.08.

Formula to calculate price of “put-option” using call-put parity (P):

S+P=EeRT+C

Calculate the price of “put-option” using call-put parity (P):

S+P=EeRT+CP=($80,000e.07(5))+$31,604.08$77,000 =$56,375.04718+$31,604.08$77,000 = $10,979.12718

Hence, the price of “put-option” is $10,979.13.

c)

Summary Introduction

To compute: The value and yield on the debt of the company.

Introduction:

Value of equity is the amount that comprises of the firm’s capital structure as equity shares. It is the total contribution of the equity shareholders to the firm. Value of debt is the amount that comprises of the firm’s capital structure as debt. It is the total contribution of the debt-holders to the firm.

c)

Expert Solution
Check Mark

Answer to Problem 22QP

The value and yield on the debt is $45,395.92 and 11.33% respectively.

Explanation of Solution

Formula to calculate value of debt:

Value of debt=Value?of?risk-free bondValue?of?put-option on assets

Calculate value of debt:

Value of debt=Value of risk-free bondValue of put-option on assets=$56,375.04718$10,979.12718=$45,395.92

Hence, value of debt is $45,395.92.

Formula to calculate yield on debt:

Value of debt=Eert

Calculate yield on debt:

Value of debt=Eert$45,395.92=$80,000er(5)$45,395.92$80,000=er(5)

r=(15)ln(0.567449)=0.1133 or 11.33%

Hence, PV yield on debt is 11.33%.

d)

Summary Introduction

To compute: The firm’s debt value after restructuring its assets.

Introduction:

Value of equity is the amount that comprises of the firm’s capital structure as equity shares. It is the total contribution of the equity shareholders to the firm. Value of debt is the amount that comprises of the firm’s capital structure as debt. It is the total contribution of the debt-holders to the firm.

d)

Expert Solution
Check Mark

Answer to Problem 22QP

The debt value of the firm is 13.43%.

Explanation of Solution

Formula to calculate PV (Present Value) of risk-free bond:

PV=Eert

Calculate PV (Present Value) of risk-free bond:

PV=Eert=$80,000e0.07(5)=$56,375.05

Hence, PV of risk-free bond is $56,375.05.

Formula to calculate the delta of the call option:

d1=[ln(SE)+(r+σ22)t]σt

Where,

S is the stock price

E is the exercise price

r is the risk-free rate

σ is the standard deviation

t is the period of maturity

Calculate the delta of the call option:

d1=ln(SE)+(r+σ22)tσt=ln($77,000$80,000)+(0.07+0.4322)×50.43×5=0.038221212+0.812250.96150923=0.8050

Hence, d1is 0.8050.

N(d1)=0.78959016

Note: The cumulative frequency distribution value for 0.8050 is 0.78959016.

Hence, the delta for the call option is 0.7896.

Formula to calculate the delta of the put option:

d2=d1σt

Calculate the delta of the put option:

d2=d1σt=0.80500.43×5=0.80500.96150923=0.1565

Hence, d2 is -0.1565.

N(d2)=0.43781946

Note: The cumulative frequency distribution value for -0.1565 is 0.43781946.

Hence, the delta for the put option is 0.4378.

Formula to calculate the call price or equity using the black-scholes model:

Equity=C=S×N(d1)E×eRt×N(d2)

Where,

S is the stock price

E is the exercise price

C is the call price

R is the risk-free rate

t is the period of maturity

Calculate the call price or equity:

Equity=C=S×N(d1)E×eRt×N(d2)=$77,000×(0.78959016)($80,000e0.07(5))(0.43781946)=$60,798.44232$24,682.09271=$36,116.35

Hence, the call price or equity is $36,116.35.

Formula to calculate price of “put-option” using call-put parity (P):

S+P=EeRT+C

Calculate the price of “put-option” using call-put parity (P):

S+P=EeRT+CP=($80,000e.07(5))+$36,116.35$77,000 =$56,375.04718+$36,116.35$77,000 = $15,491.40

Hence, the price of “put-option” is $15,491.40.

Formula to compute the value of risky bond:

Value of the risky bond=PVPut price

Compute the value of risky bond:

Value of the risky bond=PVPut price=$56,375.04718$15,491.40=$40,883.65

Hence, the value of the risky bond is $40,883.65.

Formula to compute the value of debt:

Value of risky bond=EeRT$40,883.65=($80,000eR(5))eR(5)=0.511045625

RD=(15)ln(0.5110)=0.1343 or 13.43%

Hence, the value of debt is 13.43%.

The impact of time period on the bondholder’s yield:

The yields on debt show 11.33% with 34% standard deviation and 13.43% with 43% standard deviation. Here, the increase of “standard deviation” increases the value of debt. This is the reason for increasing the yield on debt from $11.33% to $13.43%. However, the risk to earn the return also increases proportionately.

e)

Summary Introduction

To discuss: The impact of bondholders and shareholders, if the firm restructures its assets and how this creates an agency problem.

Introduction:

Value of equity is the amount that comprises of the firm’s capital structure as equity shares. It is the total contribution of the equity shareholders to the firm. Value of debt is the amount that comprises of the firm’s capital structure as debt. It is the total contribution of the debt-holders to the firm.

e)

Expert Solution
Check Mark

Explanation of Solution

Formula to calculate gain or loss of shareholders and bondholders:

Equity value change=New firm's value of equityCombined value of equity

Debt value change=New firm's value of debtValue of debt

Calculate the gain or loss of shareholders:

Equity value change=New firm's value of equityValue of equity=$36,116.35$31,604.08=$4,512.27

Hence, the gain of shareholders is $4,512.27.

Calculate the gain or loss of bondholders:

Debt value change=New firm's value of debtValue of debt=$40,883.65$45,395.92=$4,512.27

Hence, the loss of bondholders is -$4,512.27.

The impact of a firm’s reconstruction to shareholders and bondholders:

Reconstruction is favorable to shareholders. However, it creates an agency problem to bondholders. The company management is acting favorably to shareholders. They increased the wealth of shareholders by diluting the absolute amount of wealth from the bondholders. Therefore, this reconstruction is helpful to shareholders and difficult for bondholders.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Scenario three: If a portfolio has a positive investment in every asset, can the expected return on a portfolio be greater than that of every asset in the portfolio? Can it be less than that of every asset in the portfolio? If you answer yes to one of both of these questions, explain and give an example for your answer(s). Please Provide a Reference
Hello expert Give the answer please general accounting
Scenario 2: The homepage for Coca-Cola Company can be found at coca-cola.com Links to an external site.. Locate the most recent annual report, which contains a balance sheet for the company. What is the book value of equity for Coca-Cola? The market value of a company is (# of shares of stock outstanding multiplied by the price per share). This information can be found at www.finance.yahoo.com Links to an external site., using the ticker symbol for Coca-Cola (KO). What is the market value of equity? Which number is more relevant to shareholders – the book value of equity or the market value of equity?

Chapter 25 Solutions

Fundamentals of Corporate Finance

Ch. 25 - Prob. 25.1CTFCh. 25 - Prob. 25.3CTFCh. 25 - Prob. 1CRCTCh. 25 - Prob. 2CRCTCh. 25 - Prob. 3CRCTCh. 25 - Prob. 4CRCTCh. 25 - Prob. 5CRCTCh. 25 - Prob. 6CRCTCh. 25 - Prob. 7CRCTCh. 25 - Prob. 8CRCTCh. 25 - Prob. 9CRCTCh. 25 - Prob. 10CRCTCh. 25 - Prob. 1QPCh. 25 - Prob. 2QPCh. 25 - PutCall Parity [LO1] A stock is currently selling...Ch. 25 - PutCall Parity [LO1] A put option that expires in...Ch. 25 - PutCall Parity [LO1] A put option and a call...Ch. 25 - PutCall Parity [LO1] A put option and call option...Ch. 25 - BlackScholes [LO2] What are the prices of a call...Ch. 25 - Delta [LO2] What are the deltas of a call option...Ch. 25 - BlackScholes and Asset Value [LO4] You own a lot...Ch. 25 - BlackScholes and Asset Value [L04] In the previous...Ch. 25 - Time Value of Options [LO2] You are given the...Ch. 25 - PutCall Parity [LO1] A call option with an...Ch. 25 - BlackScholes [LO2] A call option matures in six...Ch. 25 - BlackScholes [LO2] A call option has an exercise...Ch. 25 - BlackScholes [LO2] A stock is currently priced at...Ch. 25 - Prob. 16QPCh. 25 - Equity as an Option and NPV [LO4] Suppose the firm...Ch. 25 - Equity as an Option [LO4] Frostbite Thermalwear...Ch. 25 - Prob. 19QPCh. 25 - Prob. 20QPCh. 25 - Prob. 21QPCh. 25 - Prob. 22QPCh. 25 - BlackScholes and Dividends [LO2] In addition to...Ch. 25 - PutCall Parity and Dividends [LO1] The putcall...Ch. 25 - Put Delta [LO2] In the chapter, we noted that the...Ch. 25 - BlackScholes Put Pricing Model [LO2] Use the...Ch. 25 - BlackScholes [LO2] A stock is currently priced at...Ch. 25 - Delta [LO2] You purchase one call and sell one put...Ch. 25 - Prob. 1MCh. 25 - Prob. 2MCh. 25 - Prob. 3MCh. 25 - Prob. 4MCh. 25 - Prob. 5MCh. 25 - Prob. 6M
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
EBK CONTEMPORARY FINANCIAL MANAGEMENT
Finance
ISBN:9781337514835
Author:MOYER
Publisher:CENGAGE LEARNING - CONSIGNMENT
Text book image
Intermediate Financial Management (MindTap Course...
Finance
ISBN:9781337395083
Author:Eugene F. Brigham, Phillip R. Daves
Publisher:Cengage Learning
Text book image
Personal Finance
Finance
ISBN:9781337669214
Author:GARMAN
Publisher:Cengage