Physics Laboratory Manual
4th Edition
ISBN: 9781133950639
Author: David Loyd
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 25, Problem 1PLA
To determine
The description of
Expert Solution & Answer
Answer to Problem 1PLA
The equation of ideal
Explanation of Solution
Ideal gas law is the equation of state of gas which describes the relation between the pressure, volume, number of molecules and absolute temperature of gas in a closed system.
The gases that obey the ideal gas equation are called ideal gas.
Write the expression for the ideal gas equation
Here,
Conclusion:
Thus, the equation of ideal gas law is
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(a)
State the Ideal Gas Law equation and express the units for each symbol.
What are the conditions under which the real gases obey the ideal gas equation?
What volume is occupied by an ideal gas at absolute zero? Express your answer with the appropriate units.
Chapter 25 Solutions
Physics Laboratory Manual
Ch. 25 - Prob. 1PLACh. 25 - What are the conditions under which a real gas...Ch. 25 - Prob. 3PLACh. 25 - Which temperature scale must always be used in the...Ch. 25 - The temperature in a room is measured to be Tc =...Ch. 25 - If the volume of the room in Question 5 is 50.0 m3...Ch. 25 - A gas at constant temperature has a volume of 25.0...Ch. 25 - A gas at constant pressure has a volume of 35.0 m3...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When we use the ideal gas law, the temperature must be in which of the following units? (5.6) (a) C (b) F (c) Karrow_forwardReview. This problem is a continuation of Problem 39 in Chapter 19. A hot-air balloon consists of an envelope of constant volume 400 m3. Not including tire air inside, the balloon and cargo have mass 200 kg. The air outside and originally inside is a diatomic ideal gas at 10.0C and 101 kPa, with density 1.25 kg/m3. A propane burner at the center of the spherical envelope injects energy into the air inside. The air inside stays at constant pressure. Hot air, at just the temperature required to make the balloon lift off, starts to fill the envelope at its closed top, rapidly enough so that negligible energy flows by heat to the cool air below it or out through the wall of the balloon. Air at 10C leaves through an opening at the bottom of the envelope until the whole balloon is filled with hot air at uniform temperature. Then the burner is shut off and the balloon rises from the ground. (a) Evaluate the quantity of energy the burner must transfer to the air in the balloon. (b) The heat value of propanethe internal energy released by burning each kilogramis 50.3 MJ/kg. What mass of propane must be burned?arrow_forwardA vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P16.56). The piston is not restricted in its motion in any way and is supported by the gas at pressure P below it. Atmospheric pressure is P0. We wish to find die height h in Figure P16.56. (a) What analysis model is appropriate to describe the piston? (b) Write an appropriate force equation for the piston from this analysis model in terms of P, P0, m, A, and g. (c) Suppose n moles of an ideal gas are in the cylinder at a temperature of T. Substitute for P in your answer to part (b) to find the height h of the piston above the bottom of the cylinder.arrow_forward
- Review. This problem is a continuation of Problem 16.29 in Chapter 16. A hot-air balloon consists of an envelope of constant volume 400 m3. Not including the air inside, the balloon and cargo have mass 200 kg. The air outside and originally inside is a diatomic ideal gas at 10.0C and 101 kPa, with density 1.25 kg/m3. A propane burner at the center of the spherical envelope injects energy into the air inside. The air inside stays at constant pressure. Hot air, at just the temperature required to make the balloon lift off, starts to fill the envelope at its closed top, rapidly enough so that negligible energy flows by heat to the cool air below it or out through the wall of the balloon. Air at 10C leaves through an opening at the bottom of the envelope until the whole balloon is filled with hot air at uniform temperature. Then the burner is shut off and the balloon rises from the ground. (a) Evaluate the quantity of energy the burner must transfer to the air in the balloon. (b) The heat value of propanethe internal energy released by burning each kilogramis 50.3 MJ/kg. What mass of propane must be burned?arrow_forwardHow real gases different from ideal gases?arrow_forwardWhat does it mean when you have a unit mass of an ideal Gas? More specifically, I'm wondering as to what about the term 'unit mass' entails about the ideal gas?arrow_forward
- In simple terms, what’s the difference between real gas and ideal gas?arrow_forwardWhy is it a bad idea to throw a spray can in a fire, even if the contents are not flammable. Use the ideal gas law in your answer.arrow_forwardIf the volume of the gas decreases to zero, what happens to the pressure?arrow_forward
- What is the relation between the kinetic theory of gases and gas laws?arrow_forwardAs weather balloons rise from the earth's surface, the pressure of the atmosphere becomes less, tending to cause the volume of the balloons to expand. However, the temperature is much lower in the upper atmosphere than at sea level. Would this temperature effect tend to make such a balloon expand or contract? Weather balloons do, in fact, expand as they rise. What does this tell you?arrow_forwardWhat happens if the ideal air balloon does not follow ideal gas laws?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY