Physics
Physics
5th Edition
ISBN: 9781260487008
Author: GIAMBATTISTA, Alan
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 25, Problem 19P

(a)

To determine

The weakest wavelengths which are in the transmitted light.

(a)

Expert Solution
Check Mark

Answer to Problem 19P

The weakest wavelengths in the transmitted light are 607nm, 496nm, and 420nm_.

Explanation of Solution

Given that the index of refraction of the soap film is 1.50, the thickness of the film is 910.0nm.

The weakest wavelengths in transmitted light correspond to the strongest wavelengths in the reflected light. Rays which are found as reflected off the front of the film will be reversed in phase, since the refractive index of the air is found to be less than the refractive index of the film.

However, the rays reflected off the back of the film are not inverted and thus the reflected rays will be out of phase and the 180° plus the phase shift caused by the path length difference.

The condition for constructive interference is used to find the strongest wavelengths in reflected light. This occurs when the path length difference, 2t is an odd multiple of half the wavelength in the film.

Write the condition for the constructive interference.

    2t=(m+12)λ                                                                                                          (I)

Here, t is the thickness of the film, m is the order of interference, λ is the wavelength of the transmitted light.

Write the expression for the wavelength of the transmitted light.

    λ=λ0nfilm                                                                                                                   (II)

Here, λ0 is the weakest wavelengths in transmitted light, nfilm is the refractive index of the film.

Use equation (II) in equation (I),

    2t=(m+12)λ0nfilm                                                                                                   (III)

Solve equation (III) for λ0,

    λ0=2tnfilm(m+12)                                                                                                         (IV)

Conclusion:

Substitute 910.0nm for t, 1.50 for nfilm and 4 for m in equation (IV) to find λ0 corresponding to 4th order.

    λ0=2(910.0nm)(1.50)4+12=607nm

Substitute 910.0nm for t, 1.50 for nfilm and 5 for m in equation (IV) to find λ0 corresponding to 5th order.

    λ0=2(910.0nm)(1.50)5+12=496nm

Substitute 910.0nm for t, 1.50 for nfilm and 6 for m in equation (IV) to find λ0 corresponding to 6th order.

    λ0=2(910.0nm)(1.50)6+12=420nm

Therefore, the weakest wavelengths in the transmitted light are 607nm, 496nm, and 420nm_.

(b)

To determine

Wavelengths which are strongest in the transmitted light.

(b)

Expert Solution
Check Mark

Answer to Problem 19P

The wavelengths which are strongest in the transmitted light are 683nm, 546nm, 455nm_.

Explanation of Solution

The strongest wavelengths in transmitted light correspond to the weakest wavelengths in reflected light. Destructive interference in the reflected light occurs when the path difference, 2t is equal to an integral number of wavelengths in the film.

Write the condition for the destructive interference.

    2t=mλ                                                                                                                   (V)

Use equation (II) in equation (I).

    2t=mλ0nfilm                                                                                                             (VI)

Solve equation (VI) for λ0.

    λ0=2tnfilmm                                                                                                            (VII)

Conclusion:

Substitute 910.0nm for t, 1.50 for nfilm and 4 for m in equation (VII) to find λ0 corresponding to 4th order.

    λ0=2(910.0nm)(1.50)4=683nm

Substitute 910.0nm for t, 1.50 for nfilm and 5 for m in equation (VII) to find λ0 corresponding to 5th order.

    λ0=2(910.0nm)(1.50)5=546nm

Substitute 910.0nm for t, 1.50 for nfilm and 6 for m in equation (VII)  to find λ0 corresponding to 6th order.

    λ0=2(910.0nm)(1.50)6=455nm

Therefore, the wavelengths which are strongest in the transmitted light are 683nm, 546nm, 455nm_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A ball is tied to one end of a string. The other end of the string is fixed. The ball is set in motion around a vertical circle without friction. At the top of the circle, the ball has a speed of ; = √√ Rg, as shown in the figure. At what angle should the string be cut so that the ball will travel through the center of the circle? The path after string is cut R
(a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic surface slopes downward toward the outside, making an angle of 24.5° with the horizontal. A 30.0-kg piece of luggage is placed on the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 37.5 s. Calculate the magnitude of the force of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N (b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to a position 7.94 m from the axis of rotation. The bag is on the verge of slipping as it goes around once every 30.5 s. Calculate the coefficient of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the…
(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.78 x 104 m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.) Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. m/s (b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 104 m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 x 10 m/s relative…

Chapter 25 Solutions

Physics

Ch. 25.7 - Prob. 25.8PPCh. 25.8 - Prob. 25.9PPCh. 25 - Prob. 1CQCh. 25 - Prob. 2CQCh. 25 - Prob. 3CQCh. 25 - Prob. 4CQCh. 25 - Prob. 5CQCh. 25 - Prob. 6CQCh. 25 - Prob. 7CQCh. 25 - Prob. 8CQCh. 25 - Prob. 9CQCh. 25 - Prob. 10CQCh. 25 - Prob. 11CQCh. 25 - 12. In Section 25.3 we studied interference due to...Ch. 25 - Prob. 13CQCh. 25 - Prob. 14CQCh. 25 - Prob. 15CQCh. 25 - Prob. 16CQCh. 25 - Prob. 17CQCh. 25 - Prob. 18CQCh. 25 - Prob. 19CQCh. 25 - Prob. 20CQCh. 25 - Prob. 21CQCh. 25 - Prob. 1MCQCh. 25 - Prob. 2MCQCh. 25 - Prob. 3MCQCh. 25 - Prob. 4MCQCh. 25 - Prob. 5MCQCh. 25 - Prob. 6MCQCh. 25 - 7. Coherent light of a single frequency passes...Ch. 25 - Prob. 8MCQCh. 25 - Prob. 9MCQCh. 25 - Prob. 10MCQCh. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - Prob. 4PCh. 25 - Prob. 5PCh. 25 - Prob. 6PCh. 25 - Prob. 7PCh. 25 - Prob. 8PCh. 25 - Prob. 9PCh. 25 - Prob. 10PCh. 25 - Prob. 11PCh. 25 - Prob. 12PCh. 25 - Prob. 13PCh. 25 - Prob. 14PCh. 25 - Prob. 15PCh. 25 - 16. A transparent film (n = 1.3) is deposited on a...Ch. 25 - 17. A camera lens (n = 1.50) is coated with a thin...Ch. 25 - 18. A soap film has an index of refraction n =...Ch. 25 - Prob. 19PCh. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - Prob. 36PCh. 25 - Prob. 28PCh. 25 - Prob. 32PCh. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - Prob. 31PCh. 25 - Prob. 34PCh. 25 - Prob. 33PCh. 25 - Prob. 35PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - Prob. 43PCh. 25 - 44. ✦ White light containing wavelengths from 400...Ch. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - 47. The central bright fringe in a single-slit...Ch. 25 - Prob. 48PCh. 25 - Prob. 49PCh. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - Prob. 53PCh. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - Prob. 56PCh. 25 - Prob. 57PCh. 25 - Prob. 58PCh. 25 - Prob. 60PCh. 25 - Prob. 61PCh. 25 - Prob. 59PCh. 25 - Prob. 62PCh. 25 - 63. ✦ If you shine a laser with a small aperture...Ch. 25 - Prob. 64PCh. 25 - Prob. 65PCh. 25 - Prob. 66PCh. 25 - Prob. 67PCh. 25 - Prob. 68PCh. 25 - Prob. 69PCh. 25 - 70. Coherent green light with a wavelength of 520...Ch. 25 - Prob. 71PCh. 25 - Prob. 72PCh. 25 - Prob. 73PCh. 25 - Prob. 74PCh. 25 - Prob. 75PCh. 25 - Prob. 76PCh. 25 - Prob. 77PCh. 25 - Prob. 78PCh. 25 - Prob. 91PCh. 25 - Prob. 79PCh. 25 - Prob. 80PCh. 25 - Prob. 81PCh. 25 - Prob. 82PCh. 25 - Prob. 83PCh. 25 - Prob. 84PCh. 25 - Prob. 85PCh. 25 - Prob. 86PCh. 25 - Prob. 87PCh. 25 - Prob. 88PCh. 25 - Prob. 89PCh. 25 - Prob. 90PCh. 25 - Prob. 93PCh. 25 - Prob. 92PCh. 25 - Prob. 94PCh. 25 - Prob. 95PCh. 25 - Prob. 96PCh. 25 - Prob. 97P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY