
Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 25, Problem 18Q
Is current used up in a resistor? Explain.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
You want to fabricate a soft microfluidic chip like the one below. How would you go about
fabricating this chip knowing that you are targeting a channel with a square cross-sectional
profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the
process to form the inlet and outlet.
Square Cross Section
1. What are the key steps involved in the fabrication of a semiconductor device.
2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer
with the pattern below. Describe the process you would use.
High Aspect
Ratio
Trenches
Undoped Si Wafer
P-doped Si
3. You would like to deposit material within a high aspect ratio trench. What approach would you
use and why?
4. A person is setting up a small clean room space to carry out an outreach activity to educate high
school students about patterning using photolithography. They obtained a positive photoresist, a
used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask
with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full
resist gets developed, and they are unable to transfer the pattern onto the resist. Help them
troubleshoot and find out why pattern of transfer has not been successful.
5. You are given a composite…
Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values.
Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all steps
Chapter 25 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 25.2 - If 1 million electrons per second pass a point in...Ch. 25.3 - Prob. 1BECh. 25.4 - Return to the Chapter-Opening Question, page 651,...Ch. 25.4 - Prob. 1DECh. 25.4 - Prob. 1EECh. 25.4 - Prob. 1FECh. 25.6 - How many 60-W 120-V lightbulbs can operate on a...Ch. 25.7 - Each channel of a stereo receiver is capable of an...Ch. 25 - What quantity is measured by a battery rating...Ch. 25 - When an electric cell is connected to a circuit,...
Ch. 25 - When a flashlight is operated, what is being used...Ch. 25 - One terminal of a car battery is said to be...Ch. 25 - When you turn on a water faucet, the water usually...Ch. 25 - Can a copper wire and an aluminum wire of the same...Ch. 25 - The equation P = V2/R indicates that the power...Ch. 25 - What happens when a lightbulb burns out?Ch. 25 - If the resistance of a small immersion heater (to...Ch. 25 - Prob. 10QCh. 25 - Explain why lightbulbs almost always burn out just...Ch. 25 - Which draws more current, a 100-W lightbulb or a...Ch. 25 - Electric power is transferred over large distances...Ch. 25 - A 15-A fuse blows repeatedly. Why is it dangerous...Ch. 25 - When electric lights are operated on low-frequency...Ch. 25 - Driven by ac power, the same electrons pass back...Ch. 25 - The heating element in a toaster is made of...Ch. 25 - Is current used up in a resistor? Explain.Ch. 25 - Compare the drift velocities and electric currents...Ch. 25 - A voltage V is connected across a wire of length l...Ch. 25 - Why is it more dangerous to turn on an electric...Ch. 25 - ( A current of 1.30 A flows in a wire. How many...Ch. 25 - (I) A service station charges a battery using a...Ch. 25 - (I) What is the current in amperes if 1200 Na+...Ch. 25 - (I) What is the resistance of a toaster if 120V...Ch. 25 - (II) An electric clothes dryer has a heating...Ch. 25 - (II) A hair dryer draws 9.5 A when plugged into a...Ch. 25 - (II) A 4.5-V battery is connected to a bulb whose...Ch. 25 - (II) A bird stands on a dc electric transmission...Ch. 25 - (II) A 12-V battery causes a current of 0.60 A...Ch. 25 - (II) An electric device draws 6.50 A at 240 V. (a)...Ch. 25 - (I) What is the diameter of a 1.00-m length of...Ch. 25 - (I) What is the resistance of a 4.5-m length of...Ch. 25 - (II) Calculate the ratio of the resistance of 10.0...Ch. 25 - (II) Can a 2.2-mm-diameter copper wire have the...Ch. 25 - (II) A sequence of potential differences V is...Ch. 25 - (II) How much would you have 10 raise the...Ch. 25 - (II) A certain copper wire has a resistance of...Ch. 25 - (II) Determine at what temperature aluminum will...Ch. 25 - (II) A 100-W lightbulb has a resistance of about...Ch. 25 - (II) Compute the voltage drop along a 26-m length...Ch. 25 - (II) Two aluminum wires have the same resistance....Ch. 25 - (II) A rectangular solid made of carbon has sides...Ch. 25 - (II) A length of aluminum wire is connected to a...Ch. 25 - (II) Small changes in the length of an object can...Ch. 25 - (II) A length of wire is cut in half and the two...Ch. 25 - (III) For some applications, it is important that...Ch. 25 - (III) Determine a formula for the total resistance...Ch. 25 - (III) The filament of a lightbulb has a resistance...Ch. 25 - (III) A 10.0-m length of wire consists of 5.0 m of...Ch. 25 - (III) A hollow cylindrical resistor with inner...Ch. 25 - (I) What is the maximum power consumption of a...Ch. 25 - (I) The heating element of an electric oven is...Ch. 25 - (I) What is the maximum voltage that can be...Ch. 25 - (I) (a) Determine the resistance of, and current...Ch. 25 - (II) An electric power plant can produce...Ch. 25 - (II) A 120-V hair dryer has two settings: 850 W...Ch. 25 - (II) A 115-V fish-tank heater is rated at 95W....Ch. 25 - (II) You buy a 75-W lightbulb in Europe, where...Ch. 25 - (II) How many kWh of energy does a 550-W toaster...Ch. 25 - (II) At 0.095/kWh, what does it cost to leave a...Ch. 25 - (II) What is the total amount of energy stored in...Ch. 25 - (II) An ordinary flashlight uses two D-cell 1.5-V...Ch. 25 - (II) How many 75-W lightbulbs, connected to 120V...Ch. 25 - (II) An extension cord made of two wires of...Ch. 25 - (II) A power station delivers 750kW of power at...Ch. 25 - (III) A small immersion heater can be used in a...Ch. 25 - (III) The current in an electromagnet connected to...Ch. 25 - (III) A 1.0-m-long round tungsten wire is to reach...Ch. 25 - (I) Calculate the peak current in a 2.7-k resistor...Ch. 25 - (I) An ac voltage, whose peak value is 180 V, is...Ch. 25 - (II) Estimate the resistance of the 120-Vrms...Ch. 25 - (II) The peak value of an alternating current in a...Ch. 25 - (II) An 1800-W are welder is connected to a...Ch. 25 - (II) (a) What is the maximum instantaneous power...Ch. 25 - (II) A heater coil connected to a 240-Vrrms ac...Ch. 25 - (II) For a time-dependent voltage V(t), which is...Ch. 25 - Prob. 57PCh. 25 - (II) A 5.80-m length of 2.0-mm-diameter wire...Ch. 25 - (II) At a point high in the Earths atmosphere....Ch. 25 - (I) What is the magnitude of the electric field...Ch. 25 - (II) A neuron is stimulated with an electric...Ch. 25 - (III) During an action potential, Na+ ions move...Ch. 25 - A person accidentally leaves a car with the lights...Ch. 25 - How many coulombs are there in 1.00 ampere-hour?Ch. 25 - You want to design a portable electric blanket...Ch. 25 - What is the average current drawn by a 1.0-hp...Ch. 25 - Prob. 67GPCh. 25 - The heating element of a 110-V, 1500-W heater is...Ch. 25 - (a) A particular household uses a 1.8-kW healer...Ch. 25 - A small city requires about 15 MW of power....Ch. 25 - A 1400-W hair dryer is designed for 117 V. (a)...Ch. 25 - The wiring in a house must be thick enough so it...Ch. 25 - Prob. 73GPCh. 25 - Suppose a current is given by the equation I =...Ch. 25 - A microwave oven running at 65% efficiency...Ch. 25 - Prob. 76GPCh. 25 - 220 V is applied to two different conductors made...Ch. 25 - An electric heater is used to heat a room of...Ch. 25 - A 2800-W oven is connected to a 240-V source, (a)...Ch. 25 - A proposed electric vehicle makes use of storage...Ch. 25 - A 12.5- resistor is made from a coil of copper...Ch. 25 - A fish-tank heater is rated at 95 W when connected...Ch. 25 - A 100-W, 120-V lightbulb has a resistance of 12 ...Ch. 25 - In an automobile, the system voltage varies from...Ch. 25 - The Tevatron accelerator at Fermilab (Illinois) is...Ch. 25 - Lightbulb A is rated at 120 V and 40 W for...Ch. 25 - An air conditioner draws 14 A at 220-V ac. The...Ch. 25 - Copper wire of diameter 0.259 cm is used to...Ch. 25 - Battery-powered electricity is very expensive...Ch. 25 - How far does an average electron move along the...Ch. 25 - A copper pipe has an inside diameter of 3.00 cm...Ch. 25 - For the wire in Fig. 2539, whose diameter varies...Ch. 25 - The cross section of a portion of wire increases...Ch. 25 - Prob. 94GPCh. 25 - The level of liquid helium (temperature 4 K) in...Ch. 25 - (II) The resistance, R, of a particular thermistor...
Additional Science Textbook Solutions
Find more solutions based on key concepts
10. Richard is driving home to visit his parents. 125 mi of the trip are on the interstate highway where the sp...
College Physics: A Strategic Approach (3rd Edition)
What is the anatomical position? Why is it important that you learn this position?
Anatomy & Physiology (6th Edition)
Foods packed in plastic for microwaving are a. dehydrated. b. freeze-dried. c. packaged aseptically. d. commerc...
Microbiology: An Introduction
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
Modified True/False 3. __________ Aquatic microorganisms are more prevalent near the surface than at the bottom...
Microbiology with Diseases by Body System (5th Edition)
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave. What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all stepsarrow_forwardAnother worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk). Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?arrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for z1z2∗. Find r and θ for z1/z2∗? Find r and θ for (z1−z2)∗/z1+z2∗. Find r and θ for (z1−z2)∗/z1z2∗ Please explain all steps, Thank youarrow_forward
- An ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude V, a 505-Ω resistor, and a capacitor of capacitance 7.2 μF. What must be the source voltage amplitude V for the average electrical power consumed in the resistor to be 236 W? There is no inductance in the circuit.arrow_forwardAn L−R−C series circuit has R= 280 Ω . At the frequency of the source, the inductor has reactance XLL= 905 Ω and the capacitor has reactance XC= 485 Ω . The amplitude of the voltage across the inductor is 445 V . What is the amplitude of the voltage across the resistor and the capacitor? What is the voltage amplitude of the source? What is the rate at which the source is delivering electrical energy to the circuit?arrow_forwardA 0.185 H inductor is connected in series with a 98.5 Ω resistor and an ac source. The voltage across the inductor is vL=−(12.5V)sin[(476rad/s)t]vL. Derive an expression for the voltage vR across the resistor. Express your answer in terms of the variables L, R, VL (amplitude of the voltage across the inductor), ω, and t. What is vR at 2.13 ms ? Please explain all stepsarrow_forward
- A worker lifts a box under the following conditions:Horizontal distance (H): 30 cmInitial height (V): 60 cmVertical travel (D): 50 cmTorso rotation (A): 30°Frequency: 3 times/minute for 1 hourGrip: Good Question:What is the RWL for this task?What does this value mean in terms of occupational safety?arrow_forwardCan someone helparrow_forwardCan someone help mearrow_forward
- 3. Four identical small masses are connected in a flat perfect square. Rank the relative rotational inertias (IA, IB, IC) about the three axes of rotation shown. Axes A and B are in the plane of the square, and axis C is perpendicular to the plane, through mass m1. ΙΑ IB m2 m1 m3 Ic m4 (a) IAarrow_forwardConsider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardCan someone helparrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning


Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY