Pearson eText for Probability & Statistics for Engineers and Scientists with R -- Instant Access (Pearson+)
Pearson eText for Probability & Statistics for Engineers and Scientists with R -- Instant Access (Pearson+)
1st Edition
ISBN: 9780137548552
Author: Michael Akritas
Publisher: PEARSON+
Question
Book Icon
Chapter 2.5, Problem 10E

(a)

To determine

Find the probability that the sample contains no defective fuses.

(a)

Expert Solution
Check Mark

Answer to Problem 10E

The probability that the sample contains no defective fuses is 0.467.

Explanation of Solution

Calculation:

The conditional probability for any two events A, B with P(A)>0,

P(B|A)=P(AB)P(A)

Let D1 denotes the first is defective, and D2 denotes second is defective.

A batch of 10 fuses contains three defective ones.

The probability that the first one is defective is,

P(D1)=310

The probability that the first one is not defective is,

P(D1c)=710

The probability that the second is defective given that first is defective is,

P(D2|D1)=29

The probability that the second is not defective given that first is not defective is,

P(D2c|D1c)=69

The probability that the second is not defective given that first is defective is,

P(D2c|D1)=79

The probability that the sample contains no defective fuses is,

P(no defective)=P(D2cD1c)=P(D2c|D1c)P(D2c)=69×710=0.467

Hence, the probability that the sample contains no defective fuses is 0.467.

(b)

To determine

Find the probability mass function of X.

(b)

Expert Solution
Check Mark

Answer to Problem 10E

The probability mass function of X is,

X012
Probability0.4670.4660.067

Explanation of Solution

Calculation:

The formula for complement of event A is,

P(Ac)=1P(A)

Let X denotes the random variable denoting the number of defective fuses in the sample.

The probability that the sample contains no defective fuses is,

P(no defective)=P(D2cD1c)=P(D2c|D1c)P(D2c)=69×710=0.467

The probability that the sample contains defective fuses is,

P(X=2)=P(D2D1)=P(D2|D1)P(D1)=29×310=0.067

The probability that the sample contains one defective fuse is,

P(X=1)=1P(X=0)P(X=2)=10.4670.067=0.466

Hence, the probability mass function of X is,

X012
Probability0.4670.4660.067

(c)

To determine

Find the probability that the defective fuse was the first one selected given that X=1.

(c)

Expert Solution
Check Mark

Answer to Problem 10E

The probability that the defective fuse was the first one selected given that X=1 is 0.5.

Explanation of Solution

Calculation:

Bayes’ theorem:

The Bayes’ formula is,

P(Aj|B)=P(Aj)P(B|Aj)i=1kP(Ai)P(B|Ai)    for j=1,2,,k.

The probability that the defective fuse was the first one selected given that X=1 is,

P(D1|X=1)=P(D1D2c)P(X=1)=P(D2c|D1)P(D1)P(X=1)=(79×0.3)0.466=0.2330.466

                      =0.50

Hence, the probability that the defective fuse was the first one selected given that X=1 is 0.5.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Patterns in Floor Tiling A square floor is to be tiled with square tiles as shown. There are blue tiles on the main diagonals and red tiles everywhere else. In all cases, both blue and red tiles must be used. and the two diagonals must have a common blue tile at the center of the floor. If 81 blue tiles will be used, how many red tiles will be needed? For what numbers in place of 81 would this problem still be solvable? Find an expression in k giving the number of red tiles required in general.
At a BBQ, you can choose to eat a burger, hotdog or pizza.  you can choose to drink water, juice or pop.  If you choose your meal at random, what is the probability that you will choose juice and a hot dog?  What is the probability that you will  not choose a burger and choose either water or pop?
a card is drawn from a standard deck of 52 cards.  If a card is choosen at random, what is the probability that the card is a)heart  b)a face card or  c)a spade or 10
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
A First Course in Probability (10th Edition)
Probability
ISBN:9780134753119
Author:Sheldon Ross
Publisher:PEARSON
Text book image
A First Course in Probability
Probability
ISBN:9780321794772
Author:Sheldon Ross
Publisher:PEARSON