
Concept explainers
(a)
ToCalculate: The potential difference between the cylinders.
(a)

Answer to Problem 90P
Explanation of Solution
Given information :
Radii of coaxial
Charge of the inner cylinder =
Charge of the outer cylinder =
Formula used :
Electric potential:
Where, Q is the charge stored and C is the capacitance.
Where,
Calculation:
The potential difference between the cylinders to their charge and capacitance is,
The capacitance of a cylindrical capacitor as a function of its radii a and b and length L:
Conclusion:
The potential difference between the cylinders is
(b)
ToCalculate: The density of the free charge of on the inner cylinder and the outer cylinder.
(b)

Answer to Problem 90P
Explanation of Solution
Given information:
Radii of coaxial conducting thin cylindrical shells =
Charge of the inner cylinder =
Charge of the outer cylinder =
Formula used:
Charge density:
Where, Q is the charge, r is the radius and L is the length of the cylinder.
Calculation:
Surface charge density is:
Conclusion:
The density of the free charge of on the inner cylinder and the outer cylinder are:
(c)
ToCalculate: The bound charge density
(c)

Answer to Problem 90P
Explanation of Solution
Given information :
Radii of coaxial conducting thin cylindrical shells =
Charge of the inner cylinder =
Charge of the outer cylinder =
Formula used :
Bound charge can be expressed as:
Where,
Bound charge density:
Where, A is the area.
Calculation:
Conclusion:
The bound charge density
(d)
ToCalculate: The total stored energy.
(d)

Answer to Problem 90P
Explanation of Solution
Given information:
Radii of coaxial conducting thin cylindrical shells =
Charge of the inner cylinder =
Charge of the outer cylinder =
Formula used:
The energy stored in the capacitor:
Where, Q is the charge and V is the electric potential.
Calculation:
The potential difference between the cylinders is
The total stored energy in terms of the charge stored and the potential difference between the cylinders:
Conclusion:
The total stored energy is,
(e)
ToCalculate: Mechanical work that is required to remove the dielectric cylindrical shell.
(e)

Answer to Problem 90P
Explanation of Solution
Given information:
Radii of coaxial conducting thin cylindrical shells =
Charge of the inner cylinder =
Charge of the outer cylinder =
Formula used:
Work done in terms of potential energy of the system:
Calculation:
The work required to remove the dielectric cylindrical shell in terms of the change in the potential energy of the system:
The potential energy of the system with the dielectric shell in place is,
Conclusion:
Mechanical work that is required to remove the dielectric cylindrical shell is
Want to see more full solutions like this?
Chapter 24 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- Sketch the harmonic.arrow_forwardFor number 11 please sketch the harmonic on graphing paper.arrow_forward# E 94 20 13. Time a) What is the frequency of the above wave? b) What is the period? c) Highlight the second cycle d) Sketch the sine wave of the second harmonic of this wave % 7 & 5 6 7 8 * ∞ Y U 9 0 0 P 150arrow_forward
- Show work using graphing paperarrow_forwardCan someone help me answer this physics 2 questions. Thank you.arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μCarrow_forward
- In the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forward
- Please see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





