
Concept explainers
(a)
ToCalculate: The energy stored in the capacitor.
(a)

Answer to Problem 85P
Explanation of Solution
Given information :
Charge of an electrically isolated capacitor
Distance between plated
Lengths of capacitor plates
Formula used :
Energy stored in capacitor is:
Where, Q is the charge stored and C is the capacitance of the capacitor.
Equivalent capacitance of parallel plate capacitor:
Calculation:
The energy stored in the capacitor as a function of the equivalent capacitance
The capacitances of the two capacitors are,
And
Conclusion:
The energy stored in the capacitor is,
(b)
ToCalculate: The force by examining how the stored energy varies with x .
(b)

Answer to Problem 85P
Explanation of Solution
Given information:
Charge of an electrically isolated capacitor
Distance between plated
Lengths of capacitor plates
Energy stored in the capacitor,
Formula used:
Electric force:
U is the energy stored.
Calculation:
Conclusion:
The force by examining how the stored energy varies with x is,
(c)
ToCalculate: The force in terms of the capacitance and potential difference V between the plates.
(c)

Answer to Problem 85P
Explanation of Solution
Given information :
Charge of an electrically isolated capacitor
Distance between plated
Lengths of capacitor plates
Formula Used:
The capacitance can be obtained by:
Where,
Charge stored in capacitor,
Where, C is the capacitance and V is the voltage.
Calculation:
Multiply and divide by
This expression is independent of x.
Conclusion:
The force in terms of the capacitance and potential difference V between the plates is,
(d)
ToFind: The position from where the force originates.
(d)

Answer to Problem 85P
The force originates from the fringing fields around the edges of the capacitor.
Explanation of Solution
Introduction:
The fringe field is the magnetic field at the edge. It occurs outside the center of the magnet. This depends on the magnet’s core.
The force originates from the condenser edges of fringing fields. The effect of force is to draw the polarized dielectric in between the plates of the condenser.
Conclusion:
Hence, the force originates from the fringing fields around the edges of the capacitor.
Want to see more full solutions like this?
Chapter 24 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
- A 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forwardFor each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





