COLLEGE PHYSICS:VOL.1
2nd Edition
ISBN: 9780134862897
Author: ETKINA
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 24, Problem 59P
24.7 Skills for applying the wave model of light
Determine body cell size Light of 630 nm wavelength from a helium-neon laser passes two different-size body cells. The angular deflection of the light as it passes the cells is (a) 0.060 radians and (b) 0.085 radians Determine the size of each cell. (See the description of the Babinet principle in Problem P24. 55.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Wavelength, Frequency, and the Speed of Light in Different Media
Part A
A beam of light from a monochromatic laser shines into a piece of glass. The
glass has thickness L and index of refraction n = 1.5. The wavelength of
the laser light in vacuum is L/10 and its frequency is f. In this problem,
neither the constant c nor its numerical value should appear in any of your
How long does it take for a short pulse of light to travel from one end of the glass to the other?
Express your answer in terms of the frequency, f. Use the numeric value given for n in the introduction.
answers.
• View Available Hint(s)
t =
Submit
Request Answer
3 Traffic Ticket
A physicist is arrested for running a red light. In court, he pleads that he approached the intersection at such a speed
that the light looked green to him. The judge, having taken a couple physics courses as an undergraduate, changes the
charge to speeding and fines the defendant $1 for every mile per hour over the local speed limit of 30 miles per hour.
What is the fine?
Assume the wavelength of green light is 530 nm and the wavelength of red light is 650 nm.
ll T-Mobile Wi-Fi
9:01 PM
24% O
Part A
What is the angle between them after they emerge?
Submit
Request Answer
< Return to Assignment
Provide Feedback
Chapter 24 Solutions
COLLEGE PHYSICS:VOL.1
Ch. 24 - Review Question 24.1 Explain why we observe...Ch. 24 - Prob. 2RQCh. 24 - Review Question 24.3 How do the locations of the...Ch. 24 - Review Question 24.4 If we look through a grating...Ch. 24 - Review Question 24.5 Equation (24.6),...Ch. 24 - Review Question 24.6 Stars are so far away that...Ch. 24 - Prob. 7RQCh. 24 - Multiple Choice Questions
1. You shine a...Ch. 24 - Multiple Choice Questions When you shine a very...Ch. 24 - Prob. 3MCQ
Ch. 24 - Multiple Choice Questions If you add a third slit...Ch. 24 - Multiple Choice Questions
5. Why don’t two...Ch. 24 - Multiple Choice Questions You shine a laser beam...Ch. 24 - Multiple Choice Questions
7. What does the...Ch. 24 - Prob. 8MCQCh. 24 - Multiple Choice Questions You shine a green laser...Ch. 24 - 10. Describe a double-slit interference experiment...Ch. 24 - You are investigating a pattern produced on a...Ch. 24 - 12. Give examples of phenomena that can be...Ch. 24 - 13. Give examples of phenomena that cannot be...Ch. 24 - Prob. 14CQCh. 24 - 15. Draw a point-like source of light. What is the...Ch. 24 - Draw two coherent light sources next to each...Ch. 24 - 17. Use the wave front representation to explain...Ch. 24 - 18. Use the wave front representation to explain...Ch. 24 - Compare the interference pattern produced by two...Ch. 24 - Draw 10 coherent point-like sources of light...Ch. 24 - If you see green light of 520-nm wavelength when...Ch. 24 - 22. Imagine that you have a very thin uniform oil...Ch. 24 - (a) Draw a picture of what you will see on a...Ch. 24 - Describe three situations that you can analyze...Ch. 24 - Why can you hear a person who is around a corner...Ch. 24 - 26 Astronomers often called the resolution limit...Ch. 24 - 24.1 and 24.2 Youngs double-slit experiment and...Ch. 24 - 24.1 and 24.2 Youngs double-slit experiment and...Ch. 24 - 24.1 and 24.2 Young’s double-slit experiment and...Ch. 24 - 24.1 and 24.2 Youngs double-slit experiment and...Ch. 24 - 24.1 and 24.2 Young’s double-slit experiment and...Ch. 24 - 24.1 and 24.2 Youngs double-slit experiment and...Ch. 24 - 24.1 and 24.2 Youngs double-slit experiment and...Ch. 24 - Gratings: an application of interference Light of...Ch. 24 - 24.3 Gratings: an application of interference...Ch. 24 - 24.3 Gratings: an application of interference
12....Ch. 24 - Gratings: an application of interference Only half...Ch. 24 - 24.3 Gratings: an application of interference...Ch. 24 - 24.3 Gratings: an application of interference...Ch. 24 - 24.3 Gratings: an application of interference
18....Ch. 24 - 24.4 Thin-film interference
20. * Representing...Ch. 24 - 24.4 Thin-film interference
21. * Oil film on...Ch. 24 -
24.4 Thin-film interference
22. * Soap bubble 1 ...Ch. 24 - 24.4 Thin-film interference * Soap bubble 2 soap...Ch. 24 - 24.4 Thin-film interference
24. * Thin-film coated...Ch. 24 - Thin-film interference * Thin-film coated glass...Ch. 24 - 24.4 Thin-film interference
26. Two flat glass...Ch. 24 - 24.5 Diffraction of light * Explain diffraction...Ch. 24 - 24.5 Diffraction of light * How did we derive it?...Ch. 24 - 24.5 Diffraction of light
31. * Explain a white...Ch. 24 - 24.5 Diffraction of light Light of wavelength 630...Ch. 24 - 24.5 Diffraction of light * Light of wavelength of...Ch. 24 - 24.5 Diffraction of light * Sound diffraction...Ch. 24 - 24.5 Diffraction of light * Light of wavelength...Ch. 24 - Prob. 36PCh. 24 - 24.6 Resolving power
37. Resolution of telescope ...Ch. 24 - Resolving power * Laser light of wavelength 630 nm...Ch. 24 - Resolving power * Size of small bead Infrared...Ch. 24 - Resolving power * Resolution of telescope How will...Ch. 24 - Resolving power * Detecting visual binary stars...Ch. 24 - Prob. 42PCh. 24 - 24.6 Resolving power
43 * Draw a graphical...Ch. 24 - 24.7 Skills for applying the wave model of...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - Prob. 48PCh. 24 - Prob. 50PCh. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of...Ch. 24 - 24.7 Skills for applying the wave model of...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - * Monochromatic light passes through two slits and...Ch. 24 - 64. Sound from speakers Two stereo speakers...Ch. 24 - Prob. 65GPCh. 24 - 66. Diffraction of water waves entering a harbor ...Ch. 24 - ** Variable thickness wedge A wedge of glass of...Ch. 24 - Prob. 69GPCh. 24 - Looking at Moon rocks You have a home telescope...Ch. 24 - * BIO EST Diffraction-limited resolving power of...Ch. 24 - 72. * Resolving sunspots You are looking at...Ch. 24 - s Mare Imbrium The outermost ring of mountains...Ch. 24 - * Can you see atoms with a light-based microscope?...Ch. 24 - * Detecting insects by diffraction of sound A...Ch. 24 - BIO What is 20/20 vision? Vision is often measured...Ch. 24 -
BIO What is 20/20 vision? Vision is often...Ch. 24 - BIO What is 20/20 vision? Vision is often measured...Ch. 24 - BIO What is 20/20 vision? Vision is often measured...Ch. 24 - BIO What is 20/20 vision? Vision is often measured...Ch. 24 - Thin-film window coatings for energy conservation...Ch. 24 - Thin-film window coatings for energy conservation...Ch. 24 - Thin-film window coatings for energy conservation...Ch. 24 - Thin-film window coatings for energy conservation...Ch. 24 - Thin-film window coatings for energy conservation...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What is the reducing agent in the following reaction?
2 Br –– (aq) + H2 O2 (aq) + 2 H+ (aq) → Br2 (aq) + 2 H2 ...
Chemistry: The Central Science (14th Edition)
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
2. Whether an allele is dominant or recessive depends on
a. how common the allele is, relative to other alleles...
Campbell Biology: Concepts & Connections (9th Edition)
Why does a one-step growth curve differ in shape from that of a bacterial growth curve?
Brock Biology of Microorganisms (15th Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
54. Riders on the Tower of Doom, an amusement park ride, experience 2.0 s of free fall, after which they are sl...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A laser is mounted in air, 0.419 m above the edge of a large, horizontal pane of crown glass (n = 1.523), as shown in the drawing. The laser is aimed at the glass in such a way that the reflected beam is 100% polarized. Detemine the distance d between the edge of the pane and the point at which the laser beam is reflected. Laser 0.419m Number i Glass pane Unitsarrow_forwardEM Waves Problem 4: Radio waves travel through air at approximately the speed of light, c. Imagine your local FM radio station broadcasts plane waves travelling in the negative x-direction with a frequency of f = 104.5 MHz. The waveform of the electric-field component is E(x, t) = E0sin(Φ(x, t)), where Φ(0, 0) = 0 and the amplitude is E0 = 0.46 N/C. Part (a) Enter an expression for the function Φ(x, t) in radians, in terms of the defined quantities, the position, x, and the time, t. Part (b) Calculate the value of the electric field, in newtons per coulomb, of the wave at the position x = -3.8 m at the time t = 0.015 μs.arrow_forwardNeeded to be solved both Question correctly in the order to get positive feedback please provide me hundred percent of Correct solutionarrow_forward
- A distant astronomical object (a quasar) is moving away from us at half the speed of light. What is the speed of the light we receive from this quasar? (a) greater than c (b) c (c) between c/2 and c (d) c/2 (e) between 0 and c/2arrow_forwardYou use a sequence of ideal polarizing filters, each with its axis making the same angle with the axis of the previous filter, to rotate the plane of polarization of a polarized light beam by a total of 45.0. You wish to have an intensity reduction no larger than 10.0%. (a) How many polarizers do you need to achieve your goal? (b) What is the angle between adjacent polarizers?arrow_forwardCertain sunglasses use a polarizing material to reduce the intensity of light reflected as glare front water or automobile windshields. What orientation should the polarizing filters haw to be most effective? (a) The polarizers should absorb light with its electric field horizontal. (b) The polarizers should absorb light with its electric field vertical. (c) The polarizers should absorb both horizontal and vertical electric fields. (d) The polarizers should not absorb either horizontal or vertical electric fields.arrow_forward
- Unpolarized light passes through two Polaroid sheets. The transmission axis of the analyzer makes an angle of 53.0 with the axis of the polarizer. (a) What fraction of the original unpolarized light is transmitted through the analyzer? (b) What fraction of the original light is absorbed by the analyzer?arrow_forward1arrow_forwardQUESTION 16 A beam of unpolarised light is sent through two polarizing sheets placed one on top of the other. The angle between the polarizing directions of the sheets is 450 for the intensity of the transmitted light to the incident intensity. Determine the amount of the intensity of the transmitted light to the incident intensity. O A. Half the incident intensity B. One third the incident intensity. Oc. One fourth the incident intensity D. Two third the incident intensity. E. One fifth the incident intensityarrow_forward
- Resources LEve Un A beam of initially unpolarized light passes through a sequence of three ideal polarizers. The angle o12 between the axes of the first and second polarizers is 18.9°, and the angle p23 between the axes of the second and third polarizers is 58.9°. P12 I, What is the ratio of the intensity 13 of light emerging from the third polarizer to the intensity Io of light incident on the first polarizer? Ioarrow_forward15arrow_forwardPhysics 102 Homework #5 first draft due Wednesday, February 18th final draft due Sunday, March 5th 1a. A light ray with wavelength 1 = 500 nm moves through air at speed 3x108 m/s. It then enters glass which has an index of refraction of n=1.53. What is the speed of light in this glass? 1b. If light in a certain material moves at 9 x 107m/s, what would the material's index of refraction be? of light in ght in glass (n=15) enters anotherarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY