24.1 and 24.2 Young’s double-slit experiment and Index of refraction, light speed, and wave coherence * Blue light of wavelength 440 nm is incident on two slits separated by 0.30 mm. Determine (a) the angular deflection to the center of the 3rd order bright band and (b) its distance from the 0th order band when the light is projected on a screen located 3.0 m from the slits. (c) Draw a sketch (not to scale) that schematically represents this situation and label all known distances and angles.
24.1 and 24.2 Young’s double-slit experiment and Index of refraction, light speed, and wave coherence * Blue light of wavelength 440 nm is incident on two slits separated by 0.30 mm. Determine (a) the angular deflection to the center of the 3rd order bright band and (b) its distance from the 0th order band when the light is projected on a screen located 3.0 m from the slits. (c) Draw a sketch (not to scale) that schematically represents this situation and label all known distances and angles.
24.1 and 24.2 Young’s double-slit experiment and Index of refraction, light speed, and wave coherence
* Blue light of wavelength 440 nm is incident on two slits separated by 0.30 mm. Determine (a) the angular deflection to the center of the 3rd order bright band and (b) its distance from the 0th order band when the light is projected on a screen located 3.0 m from the slits. (c) Draw a sketch (not to scale) that schematically represents this situation and label all known distances and angles.
1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm.
Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from
the center of the sphere.
(a) =
=
(b) E =
(c)Ẻ =
=
NC NC NC
1.
A long silver rod of radius 3.5 cm has a charge of -3.9
ис
on its surface. Here ŕ is a unit vector
ст
directed perpendicularly away from the axis of the rod as shown in the figure.
(a) Find the electric field at a point 5 cm from the center of the rod (an outside point).
E =
N
C
(b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point)
E=0
Think & Prepare
N
C
1. Is there a symmetry in the charge distribution? What kind of symmetry?
2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ
from a?
1. Determine the electric flux through each surface whose cross-section is shown below.
55
S₂
-29
S5
SA
S3
+ 9
Enter your answer in terms of q and ε
Φ
(a) s₁
(b) s₂
=
-29
(C) Φ
զ
Ερ
(d) SA
=
(e) $5
(f) Sa
$6
=
II
✓
-29
S6
+39
Chapter 24 Solutions
College Physics: Explore And Apply, Volume 2 (2nd Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.