Concept explainers
To write the expression determine the number of points they earned and find which team won.
Answer to Problem 39IP
The expression for team 1 and 2 is
Explanation of Solution
Given information:
The points for correct answer is
Calculation :
From the table provided in the question it can be observed that, for team 1 number of correct answer is
Since The points for correct answer is
So for the expression can be written by sum of multiplication of answers by their points,
So for team 1 the expression can be obtained as:
The total score of team 1 is,
From the table provided in the question it can be observed that, for team 2 number of correct answer is
Since The points for correct answer is
So for the expression can be written by sum of multiplication of answers by their points,
So for team 2 the expression can be obtained as:
The total score of team2 is,
Since
Thus, team 2 won.
Chapter 2 Solutions
Glencoe Math Accelerated, Student Edition
Additional Math Textbook Solutions
University Calculus: Early Transcendentals (4th Edition)
Intro Stats, Books a la Carte Edition (5th Edition)
Basic Business Statistics, Student Value Edition
A First Course in Probability (10th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Calculus: Early Transcendentals (2nd Edition)
- Question Is the function f(x) shown in the graph below continuous at x = -5? f(z) 7 6 5 4 2 1 0 -10 -6 -5 -4 1 0 2 3 5 7 10 -1 -2 -3 -4 -5 Select the correct answer below: The function f(x) is continuous. The right limit exists. Therefore, the function is continuous. The left limit exists. Therefore, the function is continuous. The function f(x) is discontinuous. We cannot tell if the function is continuous or discontinuous.arrow_forwardThe graph of f(x) is given below. Select all of the true statements about the continuity of f(x) at x = -1. 654 -2- -7-6-5-4- 2-1 1 2 5 6 7 02. Select all that apply: ☐ f(x) is not continuous at x = -1 because f(-1) is not defined. ☐ f(x) is not continuous at x = −1 because lim f(x) does not exist. x-1 ☐ f(x) is not continuous at x = −1 because lim ƒ(x) ‡ ƒ(−1). ☐ f(x) is continuous at x = -1 J-←台arrow_forwardLet h(x, y, z) = — In (x) — z y7-4z - y4 + 3x²z — e²xy ln(z) + 10y²z. (a) Holding all other variables constant, take the partial derivative of h(x, y, z) with respect to x, 2 h(x, y, z). მ (b) Holding all other variables constant, take the partial derivative of h(x, y, z) with respect to y, 2 h(x, y, z).arrow_forward
- ints) A common representation of data uses matrices and vectors, so it is helpful to familiarize ourselves with linear algebra notation, as well as some simple operations. Define a vector ♬ to be a column vector. Then, the following properties hold: • cu with c some constant, is equal to a new vector where every element in cv is equal to the corresponding element in & multiplied by c. For example, 2 2 = ● √₁ + √2 is equal to a new vector with elements equal to the elementwise addition of ₁ and 2. For example, 問 2+4-6 = The above properties form our definition for a linear combination of vectors. √3 is a linear combination of √₁ and √2 if √3 = a√₁ + b√2, where a and b are some constants. Oftentimes, we stack column vectors to form a matrix. Define the column rank of a matrix A to be equal to the maximal number of linearly independent columns in A. A set of columns is linearly independent if no column can be written as a linear combination of any other column(s) within the set. If all…arrow_forwardThe graph of f(x) is given below. Select each true statement about the continuity of f(x) at x = 3. Select all that apply: 7 -6- 5 4 3 2 1- -7-6-5-4-3-2-1 1 2 3 4 5 6 7 +1 -2· 3. -4 -6- f(x) is not continuous at a = 3 because it is not defined at x = 3. ☐ f(x) is not continuous at a = - 3 because lim f(x) does not exist. 2-3 f(x) is not continuous at x = 3 because lim f(x) ‡ ƒ(3). →3 O f(x) is continuous at a = 3.arrow_forwardIs the function f(x) continuous at x = 1? (z) 6 5 4 3. 2 1 0 -10 -9 -7 -5 -2 -1 0 1 2 3 4 5 6 7 8 9 10 -1 -2 -3 -4 -5 -6 -7 Select the correct answer below: ○ The function f(x) is continuous at x = 1. ○ The right limit does not equal the left limit. Therefore, the function is not continuous. ○ The function f(x) is discontinuous at x = 1. ○ We cannot tell if the function is continuous or discontinuous.arrow_forward
- Is the function f(x) shown in the graph below continuous at x = −5? f(x) 7 6 5 4 2 1 0 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 -1 -2 -3 -4 -5 -6 -7 Select the correct answer below: The function f(x) is continuous. ○ The right limit exists. Therefore, the function is continuous. The left limit exists. Therefore, the function is continuous. The function f(x) is discontinuous. ○ We cannot tell if the function is continuous or discontinuous.arrow_forward4. Evaluate the following integrals. Show your work. a) -x b) f₁²x²/2 + x² dx c) fe³xdx d) [2 cos(5x) dx e) √ 35x6 3+5x7 dx 3 g) reve √ dt h) fx (x-5) 10 dx dt 1+12arrow_forwardMath 2 question. thxarrow_forward
- Please help on this Math 1arrow_forward2. (5 points) Let f(x) = = - - - x² − 3x+7. Find the local minimum and maximum point(s) of f(x), and write them in the form (a, b), specifying whether each point is a minimum or maximum. Coordinates should be kept in fractions. Additionally, provide in your answer if f(x) has an absolute minimum or maximum over its entire domain with their corresponding values. Otherwise, state that there is no absolute maximum or minimum. As a reminder, ∞ and -∞ are not considered absolute maxima and minima respectively.arrow_forwardLet h(x, y, z) = — In (x) — z y7-4z - y4 + 3x²z — e²xy ln(z) + 10y²z. (a) Holding all other variables constant, take the partial derivative of h(x, y, z) with respect to x, 2 h(x, y, z). მ (b) Holding all other variables constant, take the partial derivative of h(x, y, z) with respect to y, 2 h(x, y, z).arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning