Concept explainers
(a)
To Calculate:The equivalent capacitance of twocapacitor in series.
(a)
Answer to Problem 33P
Explanation of Solution
Given information:
Two capacitors
Formula used:
The charge stored in a capacitor:
Where, C is the capacitance and V is the potential.
Calculation:As the capacitors are connected in series. So, charge on each capacitor is Q.
Let equivalent capacitance
This series combination is connected to a voltage source V.
So, voltage across
Total voltage
(b)
To Proof:
(b)
Answer to Problem 33P
Explanation of Solution
Given information:
From part (a), equivalent capacitance of two capacitors is
Calculation:Dividing numerator and denominator by
As
So
Dividing numerator and denominator by
As
So
So
(c)
To Calculate:The equivalent capacitance of three capacitors in series.
(c)
Answer to Problem 33P
Explanation of Solution
Given information:
The three capacitors
Formula used:
The charge stored in a capacitor:
Where, C is the capacitance and V is the potential.
Calculation: As the capacitors are connected in series. So, charge on each capacitor is Q.
Let equivalent capacitance
This series combination is connected to a voltage source V.
So, the voltage across
Total voltage,
(d)
To Calculate:
(d)
Answer to Problem 33P
Explanation of Solution
Given information:
Equivalent capacitance of three capacitors is
Calculation:
Dividing numerator and denominator by
As
So
Dividing numerator and denominator by
As
So
Dividing numerator and denominator by
As
So
So,
Want to see more full solutions like this?
Chapter 24 Solutions
Physics for Scientists and Engineers, Vol. 1
- Lab Assignment #3 Vectors 2. Determine the magnitude and sense of the forces in cables A and B. 30° 30° 300KN 3. Determine the forces in members A and B of the following structure. 30° B 200kN Name: TA: 4. Determine the resultant of the three coplanar forces using vectors. F₁ =500N, F₂-800N, F, 900N, 0,-30°, 62-50° 30° 50° F₁ = 500N = 900N F₂ = 800Narrow_forwardLab Assignment #3 Vectors Name: TA: 1. With the equipment provided in the lab, determine the magnitude of vector A so the system is in static equilibrium. Perform the experiment as per the figure below and compare the calculated values with the numbers from the spring scale that corresponds to vector A. A Case 1: Vector B 40g Vector C 20g 0 = 30° Vector A = ? Case 2: Vector B 50g Vector C = 40g 0 = 53° Vector A ? Case 3: Vector B 50g Vector C 30g 0 = 37° Vector A = ?arrow_forwardThree point-like charges are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 20.0 cm, and the point (A) is located half way between q1 and q2 along the side. Find the magnitude of the electric field at point (A). Let q1=-1.30 µC, q2=-4.20µC, and q3= +4.30 µC. __________________ N/Carrow_forward
- Find the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forwardI do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forwardRank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College