Find the
a.
b.
c.
d.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Numerical Analysis, Books A La Carte Edition (3rd Edition)
- 18. Solve the given differential equation: y' + y = f(t), y(0) = 5, where f(t) = 0arrow_forward16. Solve the given differential equation: y" + 4y Given, = sin (t)u(t2), y(0) = 1, y'(0) = 0 1 = (x² + 1)(x²+4) 1/3 -1/3 + x²+1 x²+4 Don't use any Al tool show ur answer in pe n and paper then takearrow_forwardHow to solve and explain (7x^2 -10x +11)-(9x^2 -4x + 6)arrow_forward^^ QUESTION 1. Two photos in total, I wrote the questionOnly 100% sure experts solve it correct complete solutions need to get full marks it's my quiz okkkk.take your time but solve full accurate okkk Geometry maths expert solve itarrow_forwardOnly 100% sure experts solve it correct complete solutions need to get full marks it's my quiz okkkk.take your time but solve full accurate okkk Geometry expert solve itarrow_forwardAll 6 questions in the image. Thank youarrow_forwardMinimum number of times that activity should be recorded: 9 (3 each phase) Sample calculation (Azimuth- Stars): On 05th May 2006 at 11h00m00s UTC, a vessel in position 04°30'N 010°00'W observed Canopus bearing 145° by compass. Find the compass error. If variation was 4.0° East, calculate the deviation. GHA Aries (05d 11h): 028° 10.7' Increment (00m 00s): 000° 00.0' GHA Aries: 028° 10.7' Longitude (W): (-) 010° 00.0' (minus- since longitude is westerly) LHA Aries: 018° 10.7' SHA Canopus: (+) 263° 59.0' LHA Canopus: 282° 09.7' S 052° 42.1' Declination: P=360-282° 09.7'= 77° 50.3' (If LHA>180°, P= 360-LHA) A Tan Latitude/ Tan P A Tan 04° 30' Tan 77° 50.3' A = 0.016960803 S (A is named opposite to latitude, except when hour angle is between 090° and 270°) B=Tan Declination/ Sin P B= Tan 052° 42.1/ Sin 77° 50.3' B=1.342905601 S (B is always named same as declination) C=A+B=1.359866404 S (C correction, A+/- B: If A and B have same name- add, If different name- subtract) Tan Azimuth 1/ (CX…arrow_forwardNo chatgpt pls will upvotearrow_forward2) Drive the frequency responses of the following rotor system with Non-Symmetric Stator. The system contains both external and internal damping. Show that the system loses the reciprocity property.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning