
(a)
Interpretation:
Product formed by the fusion of two
Concept Introduction:
Nuclear fusion is the reaction between two or more nuclei and which comes close enough to form one or more different atomic nuclei and subatomic particle.
(a)

Explanation of Solution
Fusion of two
Therefore, the reaction can be given as,
(b)
Interpretation:
Energy released during the reaction has to be determined.
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
It can be calculated using the given formula,
Change in mass of a given reaction can be determined as given,
(b)

Explanation of Solution
Given information is shown below,
- Calculate the mass difference:
Mass difference of the reaction can be calculated as given,
Mass difference is
- Convert the unit of mass difference:
Unit of mass difference is converted from
- Calculate the energy per atom:
Energy per atom is calculated as follows for the reaction,
Energy per atom of the given reaction is
- Convert the unit of energy:
Unit of energy is converted from
Therefore,
Energy released during the reaction is
(c)
Interpretation:
Number of positron released during the given reaction has to be determined.
Concept Introduction:
Nuclear reaction: A nuclear reaction in which a lighter nucleus fuses together into new stable nuclei or a heavier nucleus split into stable daughter nuclei with the release of large amount of energy.
Common particles in radioactive decay and nuclear transformations are mentioned below,
(c)

Explanation of Solution
The given unbalanced
The positron particles do not have any impact on mass number. Hence, total atomic number released by the positron particles can be determined by taking the difference between the atomic number of Hydrogen and Helium.
Atomic number of each positron particle is 1. Hence, number of positron particle is 2.
Therefore, equation can be given as,
(d)
Interpretation:
Changes in mass per kilogram of dilithium and of Helium-4 have to be compared.
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
It can be calculated using the given formula,
Change in mass of a given reaction can be determined as given,
(d)

Explanation of Solution
Given information is shown below,
- Calculate change in mass per kilogram of dilithium:
Change in mass per kilogram of dilithium is determined as follows,
Mass per kilogram of dilithium is
- Calculate the mass difference for the formation of Helium-4:
Mass difference of the reaction can be calculated as given,
Mass difference for the formation of Helium-4 is
- Calculate change in mass per kilogram of Helium-4:
Change in mass per kilogram of Helium-4 is determined as follows,
Mass per kilogram of Helium-4 is
Comparing both the values, mass per kilogram of Helium-4 is much higher than mass per kilogram of dilithium.
(e)
Interpretation:
Change in mass per kilogram for method used in current fusion reactors has to be compared.
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
It can be calculated using the given formula,
Change in mass of a given reaction can be determined as given,
(e)

Explanation of Solution
Given information is shown below,
- Calculate the mass of reactants and products:
Mass of reactants is determined as shown below,
Mass of products is determined as shown below,
- Calculate the mass difference:
Mass difference of the reaction can be calculated as given,
Mass difference is
- Calculate change in mass per kilogram of Helium-4 used in current fusion reactors:
Change in mass per kilogram is determined as follows,
Change in mass per kilogram of Helium-4 used in current fusion reactors is
Mass per kilogram of dilithium is
Comparing both the values, mass per kilogram of Helium-4 used in current fusion reactors is much higher than mass per kilogram of dilithium.
(f)
Interpretation:
Change in mass of the given reaction has to be determined and compared with the value of dilithium reaction.
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
It can be calculated using the given formula,
Change in mass of a given reaction can be determined as given,
(f)

Explanation of Solution
Given reaction is
Mass per kilogram of
Mass per kilogram of
Mass of
Mass of
Change in mass for dilithium reaction is shown below,
Change in mass for dilithium reaction is
Comparing to change in mass for the dilithium reaction, change in mass for the fusion of tritium with deuterium is slightly high.
Want to see more full solutions like this?
Chapter 24 Solutions
Chemistry: The Molecular Nature of Matter and Change - Standalone book
- Calculating standard reaction free energy from standard reduction... Using standard reduction potentials from the ALEKS Data tab, calculate the standard reaction free energy AG° for the following redox reaction. Be sure your answer has the correct number of significant digits. 3+ H2(g)+2OH¯ (aq) + 2Fe³+ (aq) → 2H₂O (1)+2Fe²+ (aq) 0 kJ x10 Х ? olo 18 Ararrow_forwardCalculating the pH of a weak base titrated with a strong acid An analytical chemist is titrating 184.2 mL of a 0.7800M solution of dimethylamine ((CH3) NH with a 0.3000M solution of HClO4. The pK₁ of dimethylamine is 3.27. Calculate the pH of the base solution after the chemist has added 424.1 mL of the HClO solution to it. 2 4 Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of HClO 4 solution added. Round your answer to 2 decimal places. pH = ☐ ☑ ? 000 18 Ar 1 Barrow_forwardUsing the Nernst equation to calculate nonstandard cell voltage A galvanic cell at a temperature of 25.0 °C is powered by the following redox reaction: MnO2 (s)+4H* (aq)+2Cr²+ (aq) → Mn²+ (aq)+2H₂O (1)+2Cr³+ (aq) + 2+ 2+ 3+ Suppose the cell is prepared with 7.44 M H* and 0.485 M Cr²+ in one half-cell and 7.92 M Mn² and 3.73 M Cr³+ in the other. Calculate the cell voltage under these conditions. Round your answer to 3 significant digits. ☐ x10 μ Х 5 ? 000 日。arrow_forward
- Calculating standard reaction free energy from standard reduction... Using standard reduction potentials from the ALEKS Data tab, calculate the standard reaction free energy AG° for the following redox reaction. Be sure your answer has the correct number of significant digits. NO (g) +H₂O (1) + Cu²+ (aq) → HNO₂ (aq) +H* (aq)+Cu* (aq) kJ - ☐ x10 x10 olo 18 Ararrow_forwardCalculating the pH of a weak base titrated with a strong acid b An analytical chemist is titrating 116.9 mL of a 0.7700M solution of aniline (C6H5NH2) with a 0.5300M solution of HNO3. The pK of aniline is 9.37. Calculate the pH of the base solution after the chemist has added 184.2 mL of the HNO 3 solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of HNO3 solution added. Round your answer to 2 decimal places. pH = ☐ ☑ 5arrow_forwardQUESTION: Find the standard deviation for the 4 different groups 5.298 3.977 223.4 148.7 5.38 4.24 353.7 278.2 5.033 4.044 334.6 268.7 4.706 3.621 305.6 234.4 4.816 3.728 340.0 262.7 4.828 4.496 304.3 283.2 4.993 3.865 244.7 143.6 STDEV = STDEV = STDEV = STDEV =arrow_forward
- QUESTION: Fill in the answers in the empty green boxes regarding 'Question 5: Calculating standard error of regression' *The images of the data showing 'coefficients for the standard curve' have been providedarrow_forwardUsing the Nernst equation to calculate nonstandard cell voltage Try Again Your answer is wrong. In addition to checking your math, check that you used the right data and DID NOT round any intermediate calculations. A galvanic cell at a temperature of 25.0 °C is powered by the following redox reaction: 2+ 2+ Sn²+ Ba(s) (aq) + Ba (s) Sn (s) + Ba²+ (aq) →>> Suppose the cell is prepared with 6.10 M Sn 2+ 2+ in one half-cell and 6.62 M Ba in the other. Calculate the cell voltage under these conditions. Round your answer to 3 significant digits. 1.71 V ☐ x10 ☑ 5 0/5 ? 00. 18 Ararrow_forwardQuestion: Find both the b (gradient) and a (y-intercept) value from the list of data below: (x1 -x̄) 370.5 (y1 - ȳ) 5.240 (x2 - x̄) 142.5 (y2 - ȳ) 2.004 (x3 - x̄) 28.5 (y3 - ȳ) 0.390 (x4 - x̄) -85.5 (y4 - ȳ) -1.231 (x5 - x̄) -199.5 (y5 - ȳ) -2.829 (x6 - x̄) -256.5 (y6 - ȳ) -3.575arrow_forward
- Calculating standard reaction free energy from standard reduction... Using standard reduction potentials from the ALEKS Data tab, calculate the standard reaction free energy AG° for the following redox reaction. Be sure your answer has the correct number of significant digits. 3Cu+ (aq) + Cro²¯ (aq) +4H₂O (1) → 3Cu²+ (aq) +Cr(OH)3 (s)+5OH˜¯ (aq) 0 kJ ☐ x10 00. 18 Ararrow_forwardCalculating the pH of a weak base titrated with a strong acid An analytical chemist is titrating 241.7 mL of a 0.4900M solution of methylamine (CH3NH2) with a 0.7800M solution of HNO3. The pK of methylamine is 3.36. Calculate the pH of the base solution after the chemist has added 17.7 mL of the HNO3 solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of HNO3 solution added. Round your answer to 2 decimal places. pH = ☑ ? 18 Ararrow_forwardThe following is two groups (Regular tomato sauce & Salt Reduced Tomato Sauce) of data recorded by a team analysising salt content in tomato sauce using the MOHR titration method: Regular Tomato Sauce Salt Reduced Tomato Sauce 223.4 148.7 353.7 278.2 334.6 268.7 305.6 234.4 340.0 262.7 304.3 283.2 244.7 143.6 QUESTION: For both groups of data calculate the answers attached in the image.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





