
(a)
Interpretation:
Product formed by the fusion of two
Concept Introduction:
Nuclear fusion is the reaction between two or more nuclei and which comes close enough to form one or more different atomic nuclei and subatomic particle.
(a)

Explanation of Solution
Fusion of two
Therefore, the reaction can be given as,
(b)
Interpretation:
Energy released during the reaction has to be determined.
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
It can be calculated using the given formula,
Change in mass of a given reaction can be determined as given,
(b)

Explanation of Solution
Given information is shown below,
- Calculate the mass difference:
Mass difference of the reaction can be calculated as given,
Mass difference is
- Convert the unit of mass difference:
Unit of mass difference is converted from
- Calculate the energy per atom:
Energy per atom is calculated as follows for the reaction,
Energy per atom of the given reaction is
- Convert the unit of energy:
Unit of energy is converted from
Therefore,
Energy released during the reaction is
(c)
Interpretation:
Number of positron released during the given reaction has to be determined.
Concept Introduction:
Nuclear reaction: A nuclear reaction in which a lighter nucleus fuses together into new stable nuclei or a heavier nucleus split into stable daughter nuclei with the release of large amount of energy.
Common particles in radioactive decay and nuclear transformations are mentioned below,
(c)

Explanation of Solution
The given unbalanced
The positron particles do not have any impact on mass number. Hence, total atomic number released by the positron particles can be determined by taking the difference between the atomic number of Hydrogen and Helium.
Atomic number of each positron particle is 1. Hence, number of positron particle is 2.
Therefore, equation can be given as,
(d)
Interpretation:
Changes in mass per kilogram of dilithium and of Helium-4 have to be compared.
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
It can be calculated using the given formula,
Change in mass of a given reaction can be determined as given,
(d)

Explanation of Solution
Given information is shown below,
- Calculate change in mass per kilogram of dilithium:
Change in mass per kilogram of dilithium is determined as follows,
Mass per kilogram of dilithium is
- Calculate the mass difference for the formation of Helium-4:
Mass difference of the reaction can be calculated as given,
Mass difference for the formation of Helium-4 is
- Calculate change in mass per kilogram of Helium-4:
Change in mass per kilogram of Helium-4 is determined as follows,
Mass per kilogram of Helium-4 is
Comparing both the values, mass per kilogram of Helium-4 is much higher than mass per kilogram of dilithium.
(e)
Interpretation:
Change in mass per kilogram for method used in current fusion reactors has to be compared.
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
It can be calculated using the given formula,
Change in mass of a given reaction can be determined as given,
(e)

Explanation of Solution
Given information is shown below,
- Calculate the mass of reactants and products:
Mass of reactants is determined as shown below,
Mass of products is determined as shown below,
- Calculate the mass difference:
Mass difference of the reaction can be calculated as given,
Mass difference is
- Calculate change in mass per kilogram of Helium-4 used in current fusion reactors:
Change in mass per kilogram is determined as follows,
Change in mass per kilogram of Helium-4 used in current fusion reactors is
Mass per kilogram of dilithium is
Comparing both the values, mass per kilogram of Helium-4 used in current fusion reactors is much higher than mass per kilogram of dilithium.
(f)
Interpretation:
Change in mass of the given reaction has to be determined and compared with the value of dilithium reaction.
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
It can be calculated using the given formula,
Change in mass of a given reaction can be determined as given,
(f)

Explanation of Solution
Given reaction is
Mass per kilogram of
Mass per kilogram of
Mass of
Mass of
Change in mass for dilithium reaction is shown below,
Change in mass for dilithium reaction is
Comparing to change in mass for the dilithium reaction, change in mass for the fusion of tritium with deuterium is slightly high.
Want to see more full solutions like this?
Chapter 24 Solutions
Chemistry: The Molecular Nature of Matter and Change
- Draw product A, indicating what type of reaction occurs. NH2 F3C CF3 NH OMe NH2-NH2, ACOH Aarrow_forwardPhotochemical smog is formed in part by the action of light on nitrogen dioxide. The wavelength of radiation absorbed by NO2 in this reaction is 197 nm.(a) Draw the Lewis structure of NO2 and sketch its π molecular orbitals.(b) When 1.56 mJ of energy is absorbed by 3.0 L of air at 20 °C and 0.91 atm, all the NO2 molecules in this sample dissociate by the reaction shown. Assume that each absorbed photon leads to the dissociation (into NO and O) of one NO2 molecule. What is the proportion, in parts per million, of NO2 molecules in this sample? Assume that the sample behaves ideally.arrow_forwardCorrect each molecule in the drawing area below so that it has the skeletal ("line") structure it would have if it were dissolved in a 0.1 M aqueous solution of HCI. If there are no changes to be made, check the No changes box under the drawing area. No changes. HO Explanation Check NH, 2 W O :□ G ©2025 M unter Accessibilityarrow_forward
- An expression for the root mean square velocity, vrms, of a gas was derived. Using Maxwell’s velocity distribution, one can also calculate the mean velocity and the most probable velocity (mp) of a collection of molecules. The equations used for these two quantities are vmean=(8RT/πM)1/2 and vmp=(2RT/M)1/2 These values have a fixed relationship to each other.(a) Arrange these three quantities in order of increasing magnitude.(b) Show that the relative magnitudes are independent of the molar mass of the gas.(c) Use the smallest velocity as a reference for establishing the order of magnitude and determine the relationship between the larger and smaller values.arrow_forwardThe reaction of solid dimethylhydrazine, (CH3)2N2H2, and liquefied dinitrogen tetroxide, N2O4, has been investigated for use as rocket fuel. The reaction produces the gases carbon dioxide (CO2), nitrogen (N2), and water vapor (H2O), which are ejected in the exhaust gases. In a controlled experiment, solid dimethylhydrazine was reacted with excess dinitrogen tetroxide, and the gases were collected in a closed balloon until a pressure of 2.50 atm and a temperature of 400.0 K were reached.(a) What are the partial pressures of CO2, N2, and H2O?(b) When the CO2 is removed by chemical reaction, what are the partial pressures of the remaining gases?arrow_forwardOne liter of chlorine gas at 1 atm and 298 K reacts completely with 1.00 L of nitrogen gas and 2.00 L of oxygen gas at the same temperature and pressure. A single gaseous product is formed, which fills a 2.00 L flask at 1.00 atm and 298 K. Use this information to determine the following characteristics of the product:(a) its empirical formula;(b) its molecular formula;(c) the most favorable Lewis formula based on formal charge arguments (the central atom is N);(d) the shape of the molecule.arrow_forward
- How does the square root mean square velocity of gas molecules vary with temperature? Illustrate this relationship by plotting the square root mean square velocity of N2 molecules as a function of temperature from T=100 K to T=300 K.arrow_forwardDraw product B, indicating what type of reaction occurs. F3C CF3 NH2 Me O .N. + B OMearrow_forwardBenzimidazole E. State its formula. sState the differences in the formula with other benzimidazoles.arrow_forward
- Draw product A, indicating what type of reaction occurs. F3C CN CF3 K2CO3, DMSO, H₂O2 Aarrow_forward19) Which metal is most commonly used in galvanization to protect steel structures from oxidation? Lead a. b. Tin C. Nickel d. Zinc 20) The following molecule is an example of a: R₁ R2- -N-R3 a. Secondary amine b. Secondary amide c. Tertiary amine d. Tertiary amidearrow_forwardpls helparrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





