
Concept explainers
(a)
Interpretation:
The overall equation in shorthand notation has to be written for the given reaction starting with the stable isotope before neutron activation.
Concept Introduction:
Balancing nuclear reaction equation: The balanced nuclear reaction should conserve both mass number and atomic number.
- The sum of the mass numbers of the reactants should be equal to the sum of mass numbers of the products in the reaction.
- The sum of
atomic numbers (or the atomic charge) of the reactants should be equal to the sum of atomic numbers (or the atomic charge) of the products in the reaction.
In NAA (neutron activation analysis), non-radioactive sample is bombarded with the neutrons where a small part of its atoms get converted to radioisotopes. These radioisotopes get decayed by emitting different radiations for each isotope.
(a)

Explanation of Solution
According to the law of conservation of
The
Predict the product formed when Vanadium-51 bombarded with neutron:
The given unbalanced
Product formed is determined as follows,
The elemental symbol of the product formed is
Predict the product formed after beta emission of Vanadium-52:
The given unbalanced nuclear equation is,
Product formed by
The elemental symbol of the unknown element is
Therefore,
The overall equation in shorthand notation for the reaction is shown below,
(b)
Interpretation:
The overall equation in shorthand notation has to be written for the given reaction starting with the stable isotope before neutron activation.
Concept Introduction:
Balancing nuclear reaction equation: The balanced nuclear reaction should conserve both mass number and atomic number.
- The sum of the mass numbers of the reactants should be equal to the sum of mass numbers of the products in the reaction.
- The sum of atomic numbers (or the atomic charge) of the reactants should be equal to the sum of atomic numbers (or the atomic charge) of the products in the reaction.
In NAA (neutron activation analysis), non-radioactive sample is bombarded with the neutrons where a small part of its atoms get converted to radioisotopes. These radioisotopes get decayed by emitting different radiations for each isotope.
(b)

Explanation of Solution
According to the law of conservation of atomic mass and number, the unknown element can be predicted.
The elemental symbol of an element:
Predict the product formed when Copper-63 bombarded with neutron:
The given unbalanced nuclear equation is,
Product formed is determined as follows,
The elemental symbol of the product formed is
Predict the product formed after positron emission of Copper-64:
The given unbalanced nuclear equation is,
Product formed by
The elemental symbol of the unknown element is
Therefore,
The overall equation in shorthand notation for the reaction is shown below,
(c)
Interpretation:
The overall equation in shorthand notation has to be written for the given reaction starting with the stable isotope before neutron activation.
Concept Introduction:
Balancing nuclear reaction equation: The balanced nuclear reaction should conserve both mass number and atomic number.
- The sum of the mass numbers of the reactants should be equal to the sum of mass numbers of the products in the reaction.
- The sum of atomic numbers (or the atomic charge) of the reactants should be equal to the sum of atomic numbers (or the atomic charge) of the products in the reaction.
In NAA (neutron activation analysis), non-radioactive sample is bombarded with the neutrons where a small part of its atoms get converted to radioisotopes. These radioisotopes get decayed by emitting different radiations for each isotope.
(c)

Explanation of Solution
According to the law of conservation of atomic mass and number, the unknown element can be predicted.
The elemental symbol of an element:
Predict the product formed when Aluminum-27 bombarded with neutron:
The given unbalanced nuclear equation is,
Product formed is determined as follows,
The elemental symbol of the product formed is
Predict the product formed after beta emission of Aluminum-28:
The given unbalanced nuclear equation is,
Product formed by
The elemental symbol of the unknown element is
Therefore,
The overall equation in shorthand notation for the reaction is shown below,
Want to see more full solutions like this?
Chapter 24 Solutions
Student Solutions Manual For Silberberg Chemistry: The Molecular Nature Of Matter And Change With Advanced Topics
- > Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? esc ? A O O •If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. olo 18 Ar Explanation Check BB Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Accessibilityarrow_forwardName the structurearrow_forward> For each pair of substrates below, choose the one that will react faster in a substitution reaction, assuming that: 1. the rate of substitution doesn't depend on nucleophile concentration and 2. the products are a roughly 50/50 mixture of enantiomers. Substrate A Substrate B Faster Rate X CI (Choose one) (Choose one) CI Br Explanation Check Br (Choose one) C 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy A F10arrow_forward
- How to draw this mechanism for the foloowing reaction in the foto. thank youarrow_forwardPredict the major products of the following organic reaction: Some important notes: CN A? • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. No reaction. Explanation Check Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Centerarrow_forwardDraw the major product of the following reaction. Do not draw inorganic byproducts. H3PO4 OHarrow_forward
- Predict the major products of this organic reaction: HBr (1 equiv) Δ ? Some important notes: • Draw the major product, or products, of this reaction in the drawing area below. • You can draw the products in any arrangement you like. • Pay careful attention to the reaction conditions, and only include the major products. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. • Note that there is only 1 equivalent of HBr reactant, so you need not consider the case of multiple additions. Explanation Check X ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacyarrow_forwardFor the structure below, draw the resonance structure that is indicated by the curved arrow(s). Be sure to include formal charges. :ÖH Modify the second structure given to draw the new resonance structure. Include lone pairs and charges in your structure. Use the + and - tools to add/remove charges to an atom, and use the single bond tool to add/remove double bonds.arrow_forwardUsing the table of Reactants and Products provided in the Hints section, provide the major product (with the correct stereochemistry when applicable) for questions below by selecting the letter that corresponds to the exact chemical structures for the possible product. OH conc Hydrochloric acid 40°C Temp A/arrow_forward
- Using arrows to designate the flow of electrons, complete the reaction below and provide a detailed mechanism for the formation of the product OH conc Hydrochloric acid 40°C Temp All chemical structures should be hand drawn on a piece of paper Paragraph BI UAE +varrow_forwarddraw out the following structures plesearrow_forwardDraw everything on a piece of paper outlining the synthesis from acetaldehyde to 2 cyclopentene carboxaldehyde using carbon based reagants with 3 carbons or fewers. Here is the attached image.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





