(a)
Section 1:
To find: The percentage of all attempted field goals made by Seth Fitzgerald.
(a)

Answer to Problem 20E
Solution: The required percentage is 53.33%.
Explanation of Solution
Calculation:
The percentage of field goals made by Seth Fitzgerald can be calculated as a ratio of the number of attempts, which are made by Seth Fitzgerald and total number of all attempted field goals by Seth Fitzgerald in a multiple of 100.
The total number of attempted field goal is calculated as:
The total number of field goals made by Seth Fitzgerald is calculated as:
Therefore, the required percentage is calculated as:
Section 2:
To find: The percentage of all attempted field goals made by Roberto Mantovani.
Solution: The required percentage is 53.84%.
Calculation:
The percentage of field goals made by Roberto Mantovani can be calculated as a ratio of the number of attempts that are made by Roberto Mantovani and total number of all attempted field goals in a multiple of 100.
The total number of attempted field goal is calculated as:
The total number of field goal made by Roberto Mantovani is calculated as:
Therefore, the required percentage is calculated as:
(b)
Section 1:
To find: The percentage of two-point and three-point field goals by Seth Fitzgerald.
(b)
Section 1:

Answer to Problem 20E
Solution: The percentages of two-point and three-point field goals are 55.56% and 50%.
Explanation of Solution
Calculation:
The percentage of two-point and three-point field goals can be calculated as a ratio of the number of attempts that are made by Seth Fitzgerald and the number of two-point and three-point field goals in a multiple of 100.
The total number of two-point attempted field goals by Seth Fitzgerald is calculated as:
The number of two-point field goals made is 5.
Therefore, the percentage of two-point field goals is calculated as:
The number of three-point attempted field goals is calculated as:
The number of three-point field goals made is 3.
Therefore, the percentage of three-point field goals made is calculated as:
Section 2:
To find: The percentage of two-point and three-point field goals by Roberto Mantovani.
Solution: The percentages of two-point and three-point field goals are 55.35% and 20%.
Explanation:
Calculation:
The percentage of two-point and three-point field goals made by Roberto Mantovani can be calculated as a ratio of the number of attempts that are made by Roberto Mantovani and the number of two-point and three-point field goals attempted in a multiple of 100.
The total number of two-point attempted field goals by Roberto Mantovani is calculated as:
The number of two-point field goals made is 62.
Therefore, the percentage of two-point field goals is calculated as:
The number of three-point field goals is calculated as:
The number of three-point field goals made is 1.
Therefore, the percentage of three-point field goals is calculated as:
(c)
To explain: The reason for which the provided statement is correct though its sounds to be impossible.
(c)

Answer to Problem 20E
Solution: As the number of goals made by Robert is more compared to the individual type of goals, the overall percentage is better.
Explanation of Solution
Want to see more full solutions like this?
Chapter 24 Solutions
Statistics: Concepts and Controversies - WebAssign and eBook Access
- (a) What is a bimodal histogram? (b) Explain the difference between left-skewed, symmetric, and right-skewed histograms. (c) What is an outlierarrow_forward(a) Test the hypothesis. Consider the hypothesis test Ho = : against H₁o < 02. Suppose that the sample sizes aren₁ = 7 and n₂ = 13 and that $² = 22.4 and $22 = 28.2. Use α = 0.05. Ho is not ✓ rejected. 9-9 IV (b) Find a 95% confidence interval on of 102. Round your answer to two decimal places (e.g. 98.76).arrow_forwardLet us suppose we have some article reported on a study of potential sources of injury to equine veterinarians conducted at a university veterinary hospital. Forces on the hand were measured for several common activities that veterinarians engage in when examining or treating horses. We will consider the forces on the hands for two tasks, lifting and using ultrasound. Assume that both sample sizes are 6, the sample mean force for lifting was 6.2 pounds with standard deviation 1.5 pounds, and the sample mean force for using ultrasound was 6.4 pounds with standard deviation 0.3 pounds. Assume that the standard deviations are known. Suppose that you wanted to detect a true difference in mean force of 0.25 pounds on the hands for these two activities. Under the null hypothesis, 40 = 0. What level of type II error would you recommend here? Round your answer to four decimal places (e.g. 98.7654). Use a = 0.05. β = i What sample size would be required? Assume the sample sizes are to be equal.…arrow_forward
- = Consider the hypothesis test Ho: μ₁ = μ₂ against H₁ μ₁ μ2. Suppose that sample sizes are n₁ = 15 and n₂ = 15, that x1 = 4.7 and X2 = 7.8 and that s² = 4 and s² = 6.26. Assume that o and that the data are drawn from normal distributions. Use απ 0.05. (a) Test the hypothesis and find the P-value. (b) What is the power of the test in part (a) for a true difference in means of 3? (c) Assuming equal sample sizes, what sample size should be used to obtain ẞ = 0.05 if the true difference in means is - 2? Assume that α = 0.05. (a) The null hypothesis is 98.7654). rejected. The P-value is 0.0008 (b) The power is 0.94 . Round your answer to four decimal places (e.g. Round your answer to two decimal places (e.g. 98.76). (c) n₁ = n2 = 1 . Round your answer to the nearest integer.arrow_forwardConsider the hypothesis test Ho: = 622 against H₁: 6 > 62. Suppose that the sample sizes are n₁ = 20 and n₂ = 8, and that = 4.5; s=2.3. Use a = 0.01. (a) Test the hypothesis. Round your answers to two decimal places (e.g. 98.76). The test statistic is fo = i The critical value is f = Conclusion: i the null hypothesis at a = 0.01. (b) Construct the confidence interval on 02/022 which can be used to test the hypothesis: (Round your answer to two decimal places (e.g. 98.76).) iarrow_forward2011 listing by carmax of the ages and prices of various corollas in a ceratin regionarrow_forward
- س 11/ أ . اذا كانت 1 + x) = 2 x 3 + 2 x 2 + x) هي متعددة حدود محسوبة باستخدام طريقة الفروقات المنتهية (finite differences) من جدول البيانات التالي للدالة (f(x . احسب قيمة . ( 2 درجة ) xi k=0 k=1 k=2 k=3 0 3 1 2 2 2 3 αarrow_forward1. Differentiate between discrete and continuous random variables, providing examples for each type. 2. Consider a discrete random variable representing the number of patients visiting a clinic each day. The probabilities for the number of visits are as follows: 0 visits: P(0) = 0.2 1 visit: P(1) = 0.3 2 visits: P(2) = 0.5 Using this information, calculate the expected value (mean) of the number of patient visits per day. Show all your workings clearly. Rubric to follow Definition of Random variables ( clearly and accurately differentiate between discrete and continuous random variables with appropriate examples for each) Identification of discrete random variable (correctly identifies "number of patient visits" as a discrete random variable and explains reasoning clearly.) Calculation of probabilities (uses the probabilities correctly in the calculation, showing all steps clearly and logically) Expected value calculation (calculate the expected value (mean)…arrow_forwardif the b coloumn of a z table disappeared what would be used to determine b column probabilitiesarrow_forward
- Construct a model of population flow between metropolitan and nonmetropolitan areas of a given country, given that their respective populations in 2015 were 263 million and 45 million. The probabilities are given by the following matrix. (from) (to) metro nonmetro 0.99 0.02 metro 0.01 0.98 nonmetro Predict the population distributions of metropolitan and nonmetropolitan areas for the years 2016 through 2020 (in millions, to four decimal places). (Let x, through x5 represent the years 2016 through 2020, respectively.) x₁ = x2 X3 261.27 46.73 11 259.59 48.41 11 257.96 50.04 11 256.39 51.61 11 tarrow_forwardIf the average price of a new one family home is $246,300 with a standard deviation of $15,000 find the minimum and maximum prices of the houses that a contractor will build to satisfy 88% of the market valuearrow_forward21. ANALYSIS OF LAST DIGITS Heights of statistics students were obtained by the author as part of an experiment conducted for class. The last digits of those heights are listed below. Construct a frequency distribution with 10 classes. Based on the distribution, do the heights appear to be reported or actually measured? Does there appear to be a gap in the frequencies and, if so, how might that gap be explained? What do you know about the accuracy of the results? 3 4 555 0 0 0 0 0 0 0 0 0 1 1 23 3 5 5 5 5 5 5 5 5 5 5 5 5 6 6 8 8 8 9arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





