
Concept explainers
In the event of line voltage fluctuations or failure, how is the starter maintained in a closed position?

Explain how the starter is maintained in a closed position during the event of line voltage fluctuations or failure.
Explanation of Solution
If the time is delayed, low-voltage release relay device is used with the magnetic starter and a momentary contact push button station; the motor can automatically reconnect with the power lines after a voltage failure or voltage fluctuations of short duration.
Refer to Figure 24-2 in the textbook, the electrolytic capacitor represented as C1 is charged through the rectifier. If the line voltage fluctuates or fails completely, the electrolytic capacitor can discharge through the control relay to maintain the coil as energized through which the starter can be maintained in a closed position. The discharging time required by the capacitor is a function of resistance in the circuit and capacitance of the device.
Conclusion:
Thus, the process of a starter maintained in a closed position during the event of line voltage fluctuations or failure is explained.
Want to see more full solutions like this?
- By series and parallel combinations find the equivalent 1) Inductance for this circuit. 215h m Dop 64 Mo 6h 64 26harrow_forwardElectrical engineering, Impedance and propagation coefficient.arrow_forwardwrite but do not solve the set of time domain 4) NODAL equations for this circuit- до V(+) mm 20 3h 1156 403arrow_forward
- 3 Write but do not solve the set of time domain Loop equations for this circuit. 3F 322 5h ree w 4A 6h (±) V (c) 70{ 80arrow_forwardBy series and parallel combinations find the equivalent capacitance for this circuit. 15€ Cequivalent 6f 6f 6E 12Farrow_forwardQ: Design of AM system 1- Draw the block diagram for AM transmitter 2- Draw the output waveform of transmitter and what is the device measure the output? 3- Draw the spectrum frequency for the output of transmitter 4- Why we use the modulation? Doarrow_forward
- The following circuit is at steady state for t<0. At t=0 sec, the switch is open. Let R₁ =14 ohms, R₂=14 ohms, R3-4 ohms, C₁-1 F, Vx-16 V and Ix-7 A. Find Vc1 (0.8 sec) and voltage across resistor R3 = v(1.4 sec), as follows: Vc1(0) in volts= Vc1(00) in volts= Rth in ohms= Vc1(t-0.8 sec) in volts= v(t-1.4 sec) in volts= Vx w t=0 The relative tolerance for this problem is 10 %. + www R₂ Vit R3 + Vc1(t) C₁arrow_forwardFor the circuit shown, the switch opens at t=0 sec. Find i(t=1.5) value as follows. Let R1-12 ohm, R₂-8 ohm, L=0.6 H, V≤1-10 V and V2-8 V, and determine: i(0) = A A i(∞0) = Rth = i(1.5 sec) Ω A R₁ L i(t) VS2 R2 w The relative tolerance for this problem is 9 %. + V S1arrow_forwardYou must have noticed that, when a major appliance is turned on (such as an AC unit, garbage disposal, etc.), your house lights dim momentarily. This is the effect of the RL circuit formed by the inductance and resistance of the transmission line and the loads (light bulbs, appliance, etc.) In fact, even a single straight wire has inductance. The inductance (and the resistance) of a long transmission line can be problematic if the system is not properly designed. The voltage on a power transmission line is alternating current but the effect of transmission line can be simulated by a DC circuit as shown below, where R=0.005 2 /km and L=0.04 H/km representing the resistance and inductance of the transmission line per km relationship that is with the ration: L-8 R. In the circuit, Right =160 represents light bulb resistances, R₁ = 7 represents the resistance of a 'major appliance', and the switch indicates when the appliance is turn on. Alice, a newly hired engineer, needs to determine…arrow_forward
- For the circuit shown, let Let R₁-3 ohms, R2-7 ohms, C₁-2 F, VX-20 V and Ix-1 A. Calculate the capacitor voltages, as shows, at time t= (-1.3) sec and at t=1.9 sec. In particular find: V(0) = V(∞) = Rth V(t=-1.3 sec) in volts- V(t-1.9 sec) in volts- C1 HH +V(t) = - (V) (V) (S2) (V) 3 (V) Vx +1 R1 t=0 The relative tolerance for this problem is 9 %. R₂arrow_forwardIn the circuit below, the switch moves from position 1 to position 2 at t=0. Select the closest waveform which represents the inductor current: 2 R 2R V₁ t=0 0 t=0 (a) (d) t=0 (b) (e) 0 0 t=0 (c) t=0 요 (f) Note: choices are listed randomly; may not alphabetically ordered. (given during job interview question, with permission) waveform c waveform a O waveform d waveform e waveform b ○ waveform f t=0 Rarrow_forwardLet R1-8 ohms, R₂-5 ohms, L₁-2 H, Vx=10 V, in the circuit shown, to calculate the inductor current at time t= (0.6 sec) and at t= 2 sec, as follows: i(0) = 1(00) - Rth= = i(0.6 sec) = i(2 sec) = R₁ (A) (A) (N) Vx 1=0 The relative tolerance for this problem is 9 %. (A) (A) R2 ell 4₁arrow_forward
- Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning

