Concept explainers
Figure 24-24 shows eight particles that form a square, with distance d between adjacent particles. What is the net electric potential at point P at the center of the square if we take the electric potential to be zero at infinity?
Figure 24-24 Question 1.
To find:
the net electric potential at P, the center of a square array of charged particles.
Answer to Problem 1Q
Solution:
The net electric potential at P is
Explanation of Solution
1) Concept
Electric potential obeys superposition principle. It means, the net potential at a point is the sum of potential contribution by each charge. Potential is written with the same sign as the charge contributing to it.
2) Formulae
i. Electric potential at a point due to a point charge q
Where k-
r- is the distance of the point from the charge
ii. Superposition of potential
Net electric potential= k Σ
3) Given
i. Fig. 24.24 showing 8 particles that form a square.
ii. Distance between two adjacent charges= d
iii. Charges at the top face from left to right: -4q, -2q, +q
iv. Charges at the bottom face from left to right: -q, -2q, +4q
v. Charge at the middle of left side=+5q
vi. Charge at the middle of right side=-5q
vii. Potential (V) is zero at infinity
4) Calculations
Corner particles are equidistant from the center.
Total charge of corner particles= -4q+q-q+4q=0
Therefore, the net potential at the center due to the corner particles is zero. Hence, the net potential is contributed only by the particles located in the middle of faces.
Using the formula and superposition of electric potential, the net potential
V=
=
The net electric potential at the center is
Conclusion:
Using the superposition of electric potential, net electric potential at the given point is determined.
Want to see more full solutions like this?
Chapter 24 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Additional Science Textbook Solutions
Introductory Chemistry (6th Edition)
Campbell Biology (11th Edition)
Principles of Anatomy and Physiology
College Physics: A Strategic Approach (3rd Edition)
Chemistry: The Central Science (14th Edition)
Human Physiology: An Integrated Approach (8th Edition)
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forward
- No chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forward
- a cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning