
Concept explainers
(a)
Interpretation:
The name and the formula complex ion consist of Cr3+ as the central ion and two NH3 molecules and four Cl- ions as ligands should be determined.
Concept introduction:
The coordination number of any complex is established by the total number of ions or atoms proximately surrounding or nearest to the central atom in a crystal or compound.
The oxidation number of an atom is equivalent to the charge on the ion, e.g. Na+ has the oxidation number of +1 and O2- has -2. In a molecule or compound, it is the sum of the oxidation numbers of its component atoms. The total charge of the ligands is deducted from the overall charge of the coordinate complex.
When any complex is named, the ligands are named foremost, in the alphabetical order, and the metal atom or ion is named afterward. Conversely, in the chemical formula, the metal atom or ion is marked before the ligands.

Answer to Problem 1E
The formula of the complex is
Explanation of Solution
The complex has Cr3+ as the central ion and two NH3 molecules and four Cl- ions as ligands surrounding the central ion.NH3molecules are neutral, and four Cl-ions carry -1 charge each. The oxidation number of the central ion is +3. The net charge of the complex is -1
Therefore, the formula of the complex is
(b)
Interpretation:
The formula and name of a complex which consist of iron(III) with coordination number of 6 and CN- as ligands should be determined.
Concept introduction:
The coordination number of any complex is established by the total number of ions or atoms proximately surrounding or nearest to the central atom in a crystal or compound.
The oxidation number of an atom is equivalent to the charge on the ion, e.g. Na+ has the oxidation number of +1 and O2- has -2. In a molecule or compound, it is the sum of the oxidation numbers of its component atoms. The total charge of the ligands is deducted from the overall charge of the coordinate complex.
When any complex is named, the ligands are named foremost, in the alphabetical order, and the metal atom or ion is named afterward. Conversely, in the chemical formula, the metal atom or ion is marked before the ligands.

Answer to Problem 1E
The formula of the complex is
Explanation of Solution
The complex has Iron as the central ion and six CN- ions as ligands surrounding the central ion.
Therefore, the formula of the complex is
(c)
Interpretation:
The name and the formula of a coordination compound consists of given complex ions: one a complex contain Cr(III) with ethylenediamine (en) having coordination number 6 and second, a complex contain Ni(II) with CN- having coordination number should be determined.
Concept introduction:
The coordination number of any complex is established by the total number of ions or atoms proximately surrounding or nearest to the central atom in a crystal or compound.
The oxidation number of an atom is equivalent to the charge on the ion, e.g. Na+ has the oxidation number of +1 and O2- has -2. In a molecule or compound, it is the sum of the oxidation numbers of its component atoms. The total charge of the ligands is deducted from the overall charge of the coordinate complex.
When any complex is named, the ligands are named foremost, in the alphabetical order, and the metal atom or ion is named afterward. Conversely, in the chemical formula, the metal atom or ion is marked before the ligands.

Answer to Problem 1E
The formula of the complex is
Explanation of Solution
In the first complex, ethylenediamine is a neutral ligand. Thus, for a complex of Cr (III) containing three en the charge from ligands will be0. Combined with a +3-oxidation state metal, this complex will have a charge of +3 and will, therefore, be the cationic part of the double complex is [Cr(en)3]+3.
In the Ni (II) complex, as mentioned above, each CN will contribute a charge of -1 giving the tetracyano complex a charge of -4 from the ligands. This, with the +2 oxidation on nickel gives the complex a net negative charge -2 making it the anionic part of the double compound with the formula [NiCN4]2-.
Therefore, the formula of the complex is
Want to see more full solutions like this?
Chapter 24 Solutions
General Chemistry: Principles and Modern Applications (11th Edition)
- Determine the change in Gibbs energy, entropy, and enthalpy at 25°C for the battery from which the data in the table were obtained.T (°C) 15 20 25 30 35Eo (mV) 227.13 224.38 221.87 219.37 216.59Data: n = 1, F = 96485 C mol–1arrow_forwardIndicate the correct options.1. The units of the transport number are Siemens per mole.2. The Siemens and the ohm are not equivalent.3. The Van't Hoff factor is dimensionless.4. Molar conductivity does not depend on the electrolyte concentration.arrow_forwardIdeally nonpolarizable electrodes can1. participate as reducers in reactions.2. be formed only with hydrogen.3. participate as oxidizers in reactions.4. form open and closed electrochemical systems.arrow_forward
- Indicate the options for an electrified interface:1. Temperature has no influence on it.2. Not all theories that describe it include a well-defined electrical double layer.3. Under favorable conditions, its differential capacitance can be determined with the help of experimental measurements.4. A component with high electronic conductivity is involved in its formation.arrow_forwardTo describe the structure of the interface, there are theories or models that can be distinguished by:1. calculation of the charge density.2. distribution of ions in the solution.3. experimentally measured potential difference.4. external Helmoltz plane.arrow_forwardIndicate the correct options when referring to Luther's equation:1. It is not always easy to compare its results with experimental results.2. It depends on the number of electrons exchanged in the species involved.3. Its foundation is thermodynamic.4. The values calculated with it do not depend on temperature.arrow_forward
- Indicate which of the unit options correspond to a measurement of current density.1. A s m-22. mC s-1 m-23. Ω m-24. V J-1 m-2arrow_forwardIndicate the options that are true when referring to electrode membranes:1. The Donnan potential, in general, does not always intervene in membranes.2. There are several ways to classify the same membrane.3. Any membrane can be used to determine the pH of a solution.4. Only one solution and one membrane are needed to determine the pH of that solution.arrow_forwardCalculate the maximum volume of carbon dioxide gasarrow_forward
- In galvanic cells, their potential1. can be measured with a potentiometer2. does not depend on the equilibrium constant of the reaction occurring within them3. is only calculated from the normal potentials of the electrodes they comprise4. can sometimes be considered a variation in a potential differencearrow_forwardIf some molecules in an excited state collide with other molecules in a ground state, this process1. can occur in solution and in the gas phase.2. can be treated as a bimolecular process.3. always results in collisional deactivation.4. does not compete with any other process.arrow_forwardRadiation of frequency v is incident on molecules in their ground state. The expected outcome is that1. the molecules do not change their state.2. the molecules transition to an excited state.3. the molecules undergo a secondary process.4. collisional deactivation occurs.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





