
The four ways in which colleges and universities are playing a leading role in shifting to more environmentally sustainable operations and policies.

Answer to Problem 1CR
The four ways include the use of solar panels, drought-tolerant plants, biodigester, and organic farming to meet the campus requirements.
Explanation of Solution
The four examples in which colleges and universities are playing a leading role in shifting to more environmentally sustainable operations and policies are as follows:
I. At Oberlin College in Ohio, the students design a more sustainable environmental studies building powered by solar panels. It produces 30% more electricity than the building uses.
II. At the University of Washington, in Seattle, they produce food with organic farming. It saves money, energy use, and greenhouse gas emissions.
III. The University of California, San Diego, uses drought-tolerant plants to save the water for campus use.
IV. The University of Wisconsin-Oshkosh uses a biodigester. It converts manure to fuel that supplies 20% of the energy for heating the campus building.
Want to see more full solutions like this?
Chapter 24 Solutions
Living In The Environment, Loose-leaf Version
- I need help with part carrow_forwardCan someone one sketch this and show me step by step how they did it.arrow_forward4. What is the geologic range of the fossil shown in Figure 10.15? From the Ordovician period through the Permian period. 5. What is the geologic range of the fossil shown in Figure 10.16? From the Cambrian period through the Permian period. 6. Imagine that you have discovered a rock outcrop that contains the fossils identified in Questions 4 and 5. What is the geologic range of this rock?From theperiod through the period.arrow_forward
- 4. What is the geologic range of the fossil shown in Figure 10.15? From the period through the period5. What is the geologic range of the fossil shown in Figure 10.16? From the period through the period.arrow_forwardACTIVITY 10.6 Types of Fossils Pg 174 1. Refer to Figure 10.13. Which photo(s) (A-1) best illustrate(s) the methods of fossilization or fossil evidence listed below? (Photos/letters may be used more than once.)Permineralization: The small internal cavities and pores of an original organism that are filled with precipitated mineral matter. Photo(s):Cast: The space once occupied by a dissolved shell or other structure that is subsequently filled with mineral matter. Photo(s):Carbonization: Preservation that occurs when fine sediment encases delicate plant or animal forms and leaves a residue of carbon, Photo(s):Impression: A replica of an organism, such as a leaf, left in fine-grained sedimentary rock. Photo(s):Amber: Hardened resin of ancient trees that preserved delicate organisms such as insects. Photo(s):Indirect evidence: Traces of prehistoric life but not the organism itself. Photo(s):arrow_forwardACTIVITY 10.7 Fossils as Time Indicators Pgs 175-176Use Figure 10.14, page 175, to complete the following. 1. What is the geologic range of plants that belong to the group Ginkgo?From theperiod through theperiod. 2. What is the geologic range of Lepidodendron, an extinct coal-producing plant?From theperiod through theperiod. 3. Imagine that you have discovered an outcrop of sedimentary rock that contains fossil shark teeth and fossils of Archimedes. In which time periods might this rock have formed?From theperiod through theperiod.arrow_forward
- ACTIVITY 10.4 Unconformities Pg 1721. Label the angular unconformity and disconformity on Figure 10.10. 2. Identify the types of unconformities in Figure 10.11A and Figure 10.11Barrow_forwardACTIVITY 10.3 Principles of Cross-Cutting and Inclusions Pg 171Figure 10.8 is a geologic cross-section of a hypothetical area. Use it to answer the following questions. 1. Is the igneous intrusion, dike E, older or younger than rock layers A-D? 2. Is fault H older or younger than rock layers A-D? 3. Is fault H older or younger than sedimentary layers F and G? 4. Did fault H occur before or after dike E? Explain how you arrived at your answer. 5. What evidence supports the conclusion that the igneous intrusion labeled sili B is more recent than the rock layers on either side (A and C)? ACTIVITY 10.5 Applying Relative Dating Principles Pg 173Use Figure 10.12 to complete the following. 1. Identify and label the unconformities in Figure 10.12. 2. Is rock layer I older or younger than layer H? What relative dating principle did you apply to determine your answer?Rock layer I isthan layer H.Relative dating principle: 3. Is fault L older or younger than rock layer D? What principle did you…arrow_forwardACTIVITY 10.2 Principle of Superposition Pg 170Assume that the playing cards shown in Figure 10.4 are layers of sedimentary rocks viewed from above. 1. In the space provided in Figure 10.4, list the cards by number, according to the order in which they appear to have been laid down. 2,9 4,1 7,3 6,10 2. Were you able to place all of the cards in sequence? Explain. 3. Apply the law of superposition to determine the relative ages of the sedimentary strata labeled A-D in Figure 10.5.arrow_forward
- write one paragraph about the geology of Central Park In manhattan new york . use citations. thanks :)arrow_forward5. a. the Earth b. the Moon c. the Sun. d. the stars Water Vapolis is the gas form of water. liquid 6. When water evaporates, it changes from a into a gas. 7. Walking to school on a Spring day, Violet notices dew on the ground. On her way home, the dew has disappeared. What most likely has happened to the water? 3. Based on your knowledge of the water cycle, from what body of water does the most water evaporate? Why? What is the role of plants in the water cycle?arrow_forward田 2, 3, 44 together = Chlorine 12) Filtration usty Sanda Gravel (10 5,6, +7 together = :: Aeration Tank :: Bar Screens :: Disinfection if no tertiary treatment :: Disinfection with tertiary treatment :: Grit Chamber Primary Sedimentation Tank :: Primary Treatment :: Raw Sewage :: River :: Secondary Sedimentation Tank Secondary Treatment Sludge Treatment :: Tertiary Treatment :: Treated Effluentarrow_forward
- Applications and Investigations in Earth Science ...Earth ScienceISBN:9780134746241Author:Edward J. Tarbuck, Frederick K. Lutgens, Dennis G. TasaPublisher:PEARSONExercises for Weather & Climate (9th Edition)Earth ScienceISBN:9780134041360Author:Greg CarbonePublisher:PEARSONEnvironmental ScienceEarth ScienceISBN:9781260153125Author:William P Cunningham Prof., Mary Ann Cunningham ProfessorPublisher:McGraw-Hill Education
- Earth Science (15th Edition)Earth ScienceISBN:9780134543536Author:Edward J. Tarbuck, Frederick K. Lutgens, Dennis G. TasaPublisher:PEARSONEnvironmental Science (MindTap Course List)Earth ScienceISBN:9781337569613Author:G. Tyler Miller, Scott SpoolmanPublisher:Cengage LearningPhysical GeologyEarth ScienceISBN:9781259916823Author:Plummer, Charles C., CARLSON, Diane H., Hammersley, LisaPublisher:Mcgraw-hill Education,





