EBK PHYSICS FOR SCIENTISTS & ENGINEERS
5th Edition
ISBN: 9780134296074
Author: GIANCOLI
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(b)A parallel plate air capacitor with plate area A and separation between plates is d. Now a
metal sheet of thickness d/2 is inserted between the plates of the capacitor. calculate the ratio
of capacitance before the insertion of metal sheet and after.
The square plates of the capacitor have sides " "e and are a distance "d" apart. A material of
dielectric constant "K" is inserted a distance "x" into of the capacitor.
Obtain
IV)
1)
II)
The equivalent capacitance of this device for: l=10 cm, x=4 cm, d=8 mm, k=5.
The energy stored in the capacitor for: l=10 cm, x=4 cm, d=8 mm, K-5, AV=1000 V
The force vector exerted on the dielectric, assuming a constant potential difference
"AV", neglect friction as it is very small.
Evaluate the magnitude of the force, for: 1=5 cm, AV=2 000 volts, d=2 mm, and K=4.5.
dok
T
k
H
AV
(a) Regarding the Earth and a cloud layer 750 m above the Earth as the "plates" of a capacitor, calculate the capacitance of the Earth-cloud layer system. Assume the cloud layer has an area of 1.00 km? and the air between the cloud and the ground is pure and dry. Assume charge builds
up on the cloud and on the ground until a uniform electric field of 2.00 x 105 N/C throughout the space between them makes the air break down and conduct electricity as a lightning bolt.
nF
Enter a number.
(b) What is the maximum charge the cloud can hold?
Chapter 24 Solutions
EBK PHYSICS FOR SCIENTISTS & ENGINEERS
Ch. 24.1 - Graphs for charge versus voltage are shown in Fig....Ch. 24.2 - Two circular plates of radius 5.0 cm are separated...Ch. 24.2 - What is the capacitance per unit length of a...Ch. 24.3 - Consider two identical capacitors C1 = C2 = 10 F....Ch. 24.5 - Return to the Chapter-Opening Question, page 628,...Ch. 24 - Suppose two nearby conductors carry the same...Ch. 24 - Suppose the separation of plates d in a...Ch. 24 - Suppose one of the plates of a parallel-plate...Ch. 24 - When a battery is connected to a capacitor, why do...Ch. 24 - Describe a sample method of measuring 0 using a...
Ch. 24 - Suppose three identical capacitors are connected...Ch. 24 - A large copper sheet of thickness is placed...Ch. 24 - The parallel plates of an isolated capacitor carry...Ch. 24 - If the voltage across a capacitor is doubled, the...Ch. 24 - An isolated charged capacitor has horizontal...Ch. 24 - Suppose a battery remains connected to the...Ch. 24 - How does the energy stored in a capacitor change...Ch. 24 - For dielectrics consisting of polar molecules, how...Ch. 24 - A dielectric is pulled out from between the plates...Ch. 24 - We have seen that the capacitance C depends on the...Ch. 24 - What value might we assign to the dielectric...Ch. 24 - Prob. 5MCQCh. 24 - Prob. 6MCQCh. 24 - Prob. 9MCQCh. 24 - Prob. 11MCQCh. 24 - Prob. 12MCQCh. 24 - Prob. 13MCQCh. 24 - Prob. 1PCh. 24 - Prob. 2PCh. 24 - Prob. 3PCh. 24 - Prob. 4PCh. 24 - Prob. 5PCh. 24 - Prob. 6PCh. 24 - Prob. 7PCh. 24 - Prob. 8PCh. 24 - Prob. 9PCh. 24 - Prob. 10PCh. 24 - Prob. 11PCh. 24 - Prob. 12PCh. 24 - Prob. 13PCh. 24 - Prob. 14PCh. 24 - Prob. 15PCh. 24 - Prob. 16PCh. 24 - Prob. 17PCh. 24 - Prob. 18PCh. 24 - Prob. 19PCh. 24 - Prob. 20PCh. 24 - Prob. 21PCh. 24 - Prob. 22PCh. 24 - Prob. 24PCh. 24 - Prob. 25PCh. 24 - Prob. 26PCh. 24 - Prob. 27PCh. 24 - Prob. 28PCh. 24 - Prob. 29PCh. 24 - Prob. 31PCh. 24 - Prob. 32PCh. 24 - Prob. 33PCh. 24 - Prob. 34PCh. 24 - Prob. 35PCh. 24 - Prob. 36PCh. 24 - Prob. 37PCh. 24 - Prob. 38PCh. 24 - Prob. 39PCh. 24 - Prob. 40PCh. 24 - Prob. 41PCh. 24 - Prob. 42PCh. 24 - Prob. 43PCh. 24 - Prob. 44PCh. 24 - Prob. 45PCh. 24 - Prob. 49PCh. 24 - Prob. 53PCh. 24 - Prob. 54PCh. 24 - Prob. 57PCh. 24 - Prob. 58PCh. 24 - (II) Two different dielectrics fill the space...Ch. 24 - (II) Repeat Problem 60 (Fig. 2431) but assume the...Ch. 24 - Prob. 63PCh. 24 - Prob. 76GPCh. 24 - Prob. 84GPCh. 24 - Prob. 87GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose that the capacitance of a variable capacitor can be manually changed from 100 pF to 800 pF by turning a dial, connected to one set of plates by a shaft from 0° to 180°. With the dial set at 180° (corresponding to C — 800 pF), the capacitor is connected to a 500-V source. After charging, the capacitor is disconnected from the source, and the dial is turned to 0°. If friction is negligible, how much work is required to turn the dial from 180° to 0°?arrow_forwardCheck Your Understanding The capacitance of a parallel-plate capacitor is 2.0 pF. If the area of each plate is 2.4 cm2, what is the plate separation?arrow_forwardCheck Your Understanding When a cylindrical capacitor is given a charge of 0.500 nC, a potential difference of 20.0 V is measured between the cylinders, (a) What is the capacitance of this system? (b) If the cylinders are 1.0 m long, what is the ratio of their radii?arrow_forward
- A parallel-plate capacitor with capacitance 5.0F is charged with a 12.0-V battery, after which the battery is disconnected. Determine the minimum work required to increase the separation between the plates by a factor of 3.arrow_forward(i) Rank the following five capacitors from greatest to smallest capacitance, noting any cases of equality, (a) a 20-F capacitor with a 4-V potential difference between its plates (b) a 30-F capacitor with charges of magnitude 90 C on each plate (c) a capacitor with charges of magnitude 80 C on its plates, differing by 2 V in potential. (d) a 10-F capacitor storing energy 125 J (e) a capacitor storing energy 250 J with a 10-V potential difference (ii) Rank the same capacitors in part (i) from largest to smallest according to the potential difference between the plates, (iii) Rank the capacitors in part (i) in the order of the magnitudes of the charges on their plates, (iv) Rank the capacitors in part (i) in the order of the energy they store.arrow_forwardCheck Your Understanding The potential difference across a 5.0-pF capacitor is 0.40 V. (a) What is the energy stored in this capacitor? (b) The potential difference is now increased to 1.20 V. By what factor is the stored energy increased?arrow_forward
- The dielectric to be used in a parallel-plate capacitor has a dielectric constant of 3.60 and a dielectric strength of 1.60107 V/m. The capacitor has to have a capacitance of 1.25 nF and must be able to withstand a maximum potential difference 5.5 kV. What is the minimum area the plates of the capacitor may have?arrow_forwardAn air capacitor has a capacitance of 2 µF, which becomes 12 µF when a dielectric medium is filled in the space between the plates. Find (i) dielectric constant of that material.arrow_forward(I) What is the capacitance of a pair of circular plates with a radius of 5.0 cm separated by 2.8 mm of mica?arrow_forward
- For problem 34 find U1 in mJ for C1 using capacitance values of C1 = 21.6 μF (microfarads) and C2 = (0.500) C1. All other values are the same as in the text. (Answer in 5 sig. figs.)arrow_forward(i) Use Gauss’s law to find the electric field due to a uniformly charged infinite plane sheet. What is the direction of field for positive and negative charge densities? (ii) Find the ratio of the potential differences that must be applied across the parallel and series combination of two capacitors Cj and C2 with their capacitances in the ratio 1 : 2 so that the energy stored in the two cases becomes the same.arrow_forward9:21 25) O MOGD شهد قبل دقیقتين A solid cylindrical conductor of radius 2.1 cm is coaxial with a cylindrical shell of negligible thickness, radius 23 cm. Find the capacitance in units of nf) of this cylindrical capacitor if its length is 38.6 m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
How To Solve Any Circuit Problem With Capacitors In Series and Parallel Combinations - Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=a-gPuw6JsxQ;License: Standard YouTube License, CC-BY