Concept explainers
Loop Detectors on Roadways
“Smart” traffic lights are controlled by loops of wire embedded in the road (Figure 23). These “loop detectors” sense the change in magnetic field as a large metal object—such as a car or a truck—moves over the loop. Once the object is detected, electric circuits in the controller check for cross traffic, and then turn the light from red to green.
A typical loop detector consists of three or four loops of 14-gauge wire buried 3 in. below the pavement. You can see the marks on the road where the pavement has been cut to allow for installation of the wires. There may be more than one loop detector at a given intersection; this allows the system to recognize that an object is moving as it activates first one detector and then another over a short period of time. If the system determines that a car has entered the intersection while the light is red, It can activate one camera to take a picture of the car from the front—to see the driver’s face—and then a second camera to take a picture of the car and its license plate from behind This red-light camera system was used to good effect during an exciting chase scene through the streets of London in the movie National Treasure Book of Secrets.
Motorcycles are small enough that they often fail to activate the detectors, leaving the cyclist waiting and waiting for a green light. Some companies have begun selling powerful neodymium magnets to mount on the bottom of a motorcycle to ensure that they are “seen” by the detectors.
•• Suppose a motorcycle increases the downward component of the magnetic field within a loop only from 1.2 × 10−5 T to 1.9 × 10−5 T. The detector is square, is 0.75 m on a side, and has four loops of wire. Over what period of time must the magnetic field increase if it is to induce an emf of 14 × 10−4 V?
- A. 0.028 s
- B. 0.11s
- C. 0.35 s
- D. 0.60 s

Want to see the full answer?
Check out a sample textbook solution
Chapter 23 Solutions
EP PHYSICS -MOD.MASTERING (18W)
Additional Science Textbook Solutions
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Chemistry (7th Edition)
Campbell Biology (11th Edition)
Anatomy & Physiology (6th Edition)
Human Anatomy & Physiology (2nd Edition)
Biology: Life on Earth with Physiology (11th Edition)
- Identical rays of light enter three transparent blocks composed of different materials. Light slows down upon entering the blocks.arrow_forwardFor single-slit diffraction, calculate the first three values of (the total phase difference between rays from each edge of the slit) that produce subsidiary maxima by a) using the phasor model, b) setting dr = 0, where I is given by, I = Io (sin (10) ². 2arrow_forwardA capacitor with a capacitance of C = 5.95×10−5 F is charged by connecting it to a 12.5 −V battery. The capacitor is then disconnected from the battery and connected across an inductor with an inductance of L = 1.55 H . (D)What is the charge on the capacitor 0.0235 s after the connection to the inductor is made? Interpret the sign of your answer. (e) At the time given in part (d), what is the current in the inductor? Interpret the sign of your answer. (f) Atthe time given in part (d), how much electrical energy is stored in the capacitor and how much is stored in the inductor?arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





