Concept explainers
Compute the first-order central difference approximations of
(a)
(b)
(c)
(d)
(e)
Compare your results with the analytical solutions.
(a)

To calculate: The first order central difference approximations of
Answer to Problem 8P
Solution:
Analytic value of the first derivative is
Explanation of Solution
Given information:
The function,
The value of x,
Step size
Formula used:
Central difference approximation of
Here, h is step size and
Calculation:
Consider the function,
Differentiate the function with respect to x,
Now substitute
Thus, the analytic value of the first derivative of the function is
Again, consider the function,
Here,
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
Now, central difference approximation of
Substitute the values of
Therefore, the analytic value of the first derivative at
(b)

To calculate: The first order central difference approximations of
Answer to Problem 8P
Solution:
Analytic value of the first derivative is
Explanation of Solution
Given information:
The function,
The value of x,
Step size
Formula used:
Central difference approximation of
Here, h is step size and
Calculation:
Consider the function,
Differentiate the function with respect to x,
Now substitute
Thus, the analytic value of the first derivative of the function is
Again, consider the function,
Here,
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
Now, central difference approximation of
Substitute the values of
Therefore, the analytic value of the first derivative at
(c)

To calculate: The first order central difference approximations of
Answer to Problem 8P
Solution:
Analytic value of the first derivative is
Explanation of Solution
Given information:
The function,
The value of x,
Step size
Formula used:
Central difference approximation of
Here, h is step size and
Calculation:
Consider the function,
Differentiate the function with respect to x,
Now substitute
Thus, the analytic value of the first derivative of the function is
Again, consider the function,
Here,
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
Now, central difference approximation of
Substitute the values of
Therefore, the analytic value of the first derivative at
(d)

To calculate: The first order central difference approximations of
Answer to Problem 8P
Solution:
Analytic value of the first derivative is
Explanation of Solution
Given information:
The function,
The value of x,
Step size
Formula used:
Central difference approximation of
Here, h is step size and
Calculation:
Consider the function,
Differentiate the function with respect to x,
Now substitute
Thus, the analytic value of the first derivative of the function is
Again, consider the function,
Here,
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
Now, central difference approximation of
Substitute the values of
Therefore, the analytic value of the first derivative at
(e)

To calculate: The first order central difference approximations of
Answer to Problem 8P
Solution:
Analytic value of the first derivative is
Explanation of Solution
Given information:
The function,
The value of x,
Step size
Formula used:
Central difference approximation of
Here, h is step size and
Calculation:
Consider the function,
Differentiate the function with respect to x,
Now substitute
Thus, the analytic value of the first derivative of the function is
Again, consider the function,
Here,
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
Now, central difference approximation of
Substitute the values of
Therefore, the analytic value of the first derivative at
Want to see more full solutions like this?
Chapter 23 Solutions
EBK NUMERICAL METHODS FOR ENGINEERS
Additional Engineering Textbook Solutions
Pathways To Math Literacy (looseleaf)
University Calculus
Basic College Mathematics
Elementary Statistics: Picturing the World (7th Edition)
College Algebra (7th Edition)
Elementary & Intermediate Algebra
- You manage a chemical company with 2 warehouses. The following quantities of Important Chemical A have arrived from an international supplier at 3 different ports: Chemical Available (L) Port 1 400 Port 2 110 Port 3 100 The following amounts of Important Chemical A are required at your warehouses: Warehouse 1 Warehouse 2 Chemical Required (L) 380 230 The cost in£to ship 1L of chemical from each port to each warehouse is as follows: Warehouse 1 Warehouse 2 Port 1 £10 Port 2 £20 Port 3 £13 £45 £28 £11 (a) You want to know how to send these shipments as cheaply as possible. For- mulate this as a linear program (you do not need to formulate it in standard inequality form) indicating what each variable represents. (b) Suppose now that all is as in the previous question but that only 320L of Important Chemical A are now required at Warehouse 1. Any excess chemical can be transported to either Warehouse 1 or 2 for storage, in which case the company must pay only the relevant transportation…arrow_forwardSuppose we have a linear program in standard equation form maximize cx subject to Ax = b, x > 0. and suppose u, v, and w are all optimal solutions to this linear program. (a) Prove that z = u+v+w is an optimal solution. (b) If you try to adapt your proof from part (a) to prove that that u+v+w is an optimal solution, say exactly which part(s) of the proof go wrong. (c) If you try to adapt your proof from part (a) to prove that u+v-w is an optimal solution, say exactly which part(s) of the proof go wrong.arrow_forwardCan the expert solve an Integral In detall? Hoxto³ W. 1 w = dw 大 90x103 80*10³ ⑥M = 1 1012 221 JW 70x10 80x103 © P= ± Sin (lw/+1) dw 70*10*Aarrow_forward
- if δ ≥ 2, then it contains a cycle with length at least δ + 1.arrow_forwardK=3, Gauss Seidel Fill in only 4 decimal places here in Canvas. Make sure in exam and homework, 6 decimal places are required. X1 = X2 = X3 =arrow_forwardQ/Solve the heat equation initial-boundary-value problem:- ut = ux X u (x90) = X ux (ost) = ux (39) = 0arrow_forward
- A graph G of order 12 has vertex set V(G) = {c1, c2, …, c12} for the twelve configurations inFigure 1.4. A “move” on this checkerboard corresponds to moving a single coin to anunoccupied square, where(1) the gold coin can only be moved horizontally or diagonally,(2) the silver coin can only be moved vertically or diagonally.Two vertices ci and cj (i ≠ j) are adjacent if it is possible to move ci to cj by a single move. (a) What vertices are adjacent to c1 in G?(c) Draw the subgraph of G induced by {c2, c6, c9, c11}.arrow_forwardi) Consider the set S = {−6, −3, 0, 3, 6}. Draw a graph G whose set of verti- ces be S and such that for i, j ∈ S, ij ∈ E(G) if ij are related to a rule that t'u you choose to apply to i and j. (ii) A graph G of order 12 has as a set of vertices c1, c2, . . . , c12 for the do- ce configurations of figure 1. A movement on said board corresponds to moving a coin to an unoccupied square using the following two rules: 1. the gold coin can move only horizontally or diagonally, 2. the silver coin can move only vertically or diagonally. Two vertices ci, cj, i̸ = j are adjacent if it is possible to move ci to cj in a single movement. a) What vertices are adjacent to c1 in G? b) Draw the subgraph induced by {c2, c6, c9, c11}arrow_forwardProve for any graph G, δ(G) ≤ d(G) ≤ ∆(G) using the definition of average degree, make a formal proofarrow_forward
- Advanced Engineering MathematicsAdvanced MathISBN:9780470458365Author:Erwin KreyszigPublisher:Wiley, John & Sons, IncorporatedNumerical Methods for EngineersAdvanced MathISBN:9780073397924Author:Steven C. Chapra Dr., Raymond P. CanalePublisher:McGraw-Hill EducationIntroductory Mathematics for Engineering Applicat...Advanced MathISBN:9781118141809Author:Nathan KlingbeilPublisher:WILEY
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,





