
Pearson eText Conceptual Physical Science -- Instant Access (Pearson+)
6th Edition
ISBN: 9780134857107
Author: Paul Hewitt, John Suchocki
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 23, Problem 89E
To determine
To explain: The cause of glacial-interglacial cycle and whether the current age is an ice age or not.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A proton moves at 5.20 × 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects.
(a) Find the time interval required for the proton to travel 6.00 cm horizontally.
83.33
☑
Your response differs from the correct answer by more than 10%. Double check your calculations. ns
(b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.)
2.77
Your response differs from the correct answer by more than 10%. Double check your calculations. mm
(c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally.
5.4e5
V
×
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + [6.68e4
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each…
(1)
Fm
Fmn
mn
Fm
B
W₁
e
Fmt
W
0
Fit
Wt
0
W
Fit
Fin
n
Fmt
n
As illustrated in Fig.
consider the
person
performing extension/flexion movements of the lower leg
about the knee joint (point O) to investigate the forces and
torques produced by muscles crossing the knee joint. The
setup of the experiment is described in Example
above.
The geometric parameters of the model under investigation,
some of the forces acting on the lower leg and its free-body
diagrams are shown in Figs. and For this system, the
angular displacement, angular velocity, and angular accelera-
tion of the lower leg were computed using data obtained
during the experiment such that at an instant when 0 = 65°,
@ = 4.5 rad/s, and a = 180 rad/s². Furthermore, for this sys-
tem assume that a = 4.0 cm, b = 23 cm, ß = 25°, and the net
torque generated about the knee joint is M₁ = 55 Nm. If the
torque generated about the knee joint by the weight of the lower
leg is Mw 11.5 Nm, determine:
=
The moment arm a of Fm relative to the…
The figure shows a particle that carries a charge of 90 = -2.50 × 106 C. It is moving along the +y
->
axis at a speed of v = 4.79 × 106 m/s. A magnetic field B of magnitude 3.24 × 10-5 T is directed
along the +z axis, and an electric field E of magnitude 127 N/C points along the -x axis.
Determine (a) the magnitude and (b) direction (as an angle within x-y plane with respect to +x-
axis in the range (-180°, 180°]) of the net force that acts on the particle.
+x
+z
AB
90
+y
Chapter 23 Solutions
Pearson eText Conceptual Physical Science -- Instant Access (Pearson+)
Ch. 23 - Prob. 1RCQCh. 23 - What six principles are used in relative dating?...Ch. 23 - A granitic dike is found across a sandstone layer....Ch. 23 - Why dont all rock formations show a continuous...Ch. 23 - How are fossils used in determining geologic time?Ch. 23 - In a sequence of sedimentary rock layers, the...Ch. 23 - Prob. 7RCQCh. 23 - What is radioactive half-life?Ch. 23 - What are the half-lives of uranium-238,...Ch. 23 - Prob. 10RCQ
Ch. 23 - Prob. 11RCQCh. 23 - Which of the geologic time units spans the...Ch. 23 - Prob. 13RCQCh. 23 - What key developments in life occurred during...Ch. 23 - What evidence do we have of Precambrian life?Ch. 23 - The Paleozoic era experienced several fluctuations...Ch. 23 - Prob. 17RCQCh. 23 - Prob. 18RCQCh. 23 - What life forms are associated with the Devonian...Ch. 23 - Why are internal nostrils in the lobe-finned...Ch. 23 - Why do many geologists consider the lobe-finned...Ch. 23 - During what time period were most coal deposits...Ch. 23 - In what area of the United States do we find rich...Ch. 23 - What group evolved from the amphibians with the...Ch. 23 - Prob. 25RCQCh. 23 - What is the most likely cause of the Cretaceous...Ch. 23 - What effect did the breakup of Pangaea have on sea...Ch. 23 - How is the element iridium related to the time of...Ch. 23 - Which epochs make up the Tertiary period? The...Ch. 23 - What important life forms evolved during the...Ch. 23 - Refer to the accompanying figure. Using the...Ch. 23 - On a cross section, a dark wavy line is used to...Ch. 23 - If fine muds were laid down at a rate of 1 cm/1000...Ch. 23 - With the formation of Pangaea, disconnected...Ch. 23 - The decay of radioactive elements to stable...Ch. 23 - Going from oldest to youngest, rank these life...Ch. 23 - The geologic time scale is subdivided into eons,...Ch. 23 - Prob. 38TARCh. 23 - Throughout geologic time there have been several...Ch. 23 - Throughout geologic time there have been many...Ch. 23 - The Cenozoic is known for many tectonic events. In...Ch. 23 - Each period of the Paleozoic saw marked changes in...Ch. 23 - Prob. 43TARCh. 23 - If a sedimentary rock contains inclusions of...Ch. 23 - Granitic pebbles within a sedimentary rock have a...Ch. 23 - Two isolated rock outcrops share a few similar...Ch. 23 - Suppose that in an undeformed sequence of rocks,...Ch. 23 - In a sequence of sedimentary rock layers, the...Ch. 23 - What is the difference between a nonconformity and...Ch. 23 - Prob. 50ECh. 23 - What general assumption must be made to understand...Ch. 23 - Suppose you see a sequence of sedimentary rock...Ch. 23 - In dating a mineral, what is meant by resetting...Ch. 23 - A radiometric date is determined from mica that...Ch. 23 - If we divide a number by 2, and then divide the...Ch. 23 - Which isotopes are most appropriate for dating...Ch. 23 - Has the amount of uranium in Earth increased over...Ch. 23 - Before the discovery of radioactivity, how did...Ch. 23 - In the geologic time scale, which time division...Ch. 23 - What is the basis for the division of the geologic...Ch. 23 - What factors are believed to have contributed to...Ch. 23 - Prob. 62ECh. 23 - Prob. 63ECh. 23 - How did the Precambrian atmosphere become...Ch. 23 - Why is it difficult to find fossils in Precambrian...Ch. 23 - What are strematolites, and what is their...Ch. 23 - Prob. 67ECh. 23 - Prob. 68ECh. 23 - Prob. 69ECh. 23 - Prob. 70ECh. 23 - Prob. 71ECh. 23 - Coal beds form from the accumulation of plant...Ch. 23 - Prob. 73ECh. 23 - What can cause a rise in sea level? Is this likely...Ch. 23 - What are some potential worldwide consequences...Ch. 23 - What is the significance of an amniote egg?Ch. 23 - Prob. 77ECh. 23 - What effect did the breakup of Pangaea have on...Ch. 23 - Was there a time when dinosaurs and humans...Ch. 23 - Prob. 80ECh. 23 - Prob. 81ECh. 23 - How does basaltic lava in a rift zone separate two...Ch. 23 - Prob. 83ECh. 23 - What is the Anthropocene epoch?Ch. 23 - Prob. 85ECh. 23 - Prob. 86ECh. 23 - What event allowed the evolution of many mammals...Ch. 23 - Prob. 88ECh. 23 - Prob. 89ECh. 23 - Prob. 90ECh. 23 - Prob. 91ECh. 23 - Prob. 92ECh. 23 - How old are the oldest rocks on Earth? About how...Ch. 23 - During Earth's long history, life has emerged and...Ch. 23 - Prob. 95ECh. 23 - Prob. 96ECh. 23 - Prob. 97DQCh. 23 - How have modern humans affected geologic...Ch. 23 - Prob. 99DQCh. 23 - Prob. 100DQCh. 23 - The principle of superposition is that each new...Ch. 23 - Life forms throughout Earths past have emerged in...Ch. 23 - The time it takes for 50% of a radioactive...Ch. 23 - Development of Earths oceans was probably due to...Ch. 23 - Prob. 5RATCh. 23 - The Paleozoic experienced several fluctuations in...Ch. 23 - The most important event during the Cambrian...Ch. 23 - The formation of the supercontinent of Pangaea (a)...Ch. 23 - Prob. 9RATCh. 23 - The creation of the San Andreas Fault corresponded...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 1.00 μC, and L = 0.850 m). Calculate the total electric force on the 7.00-μC charge. magnitude direction N ° (counterclockwise from the +x axis) y 7.00 με 9 L 60.0° x -4.00 μC ①arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 9.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol. (b) Imagine adding electrons to the pin until the negative charge has the very large value 1.00 mC. How many electrons are added for every 109 electrons already present?arrow_forward(a) A physics lab instructor is working on a new demonstration. She attaches two identical copper spheres with mass m = 0.180 g to cords of length L as shown in the figure. A Both spheres have the same charge of 6.80 nC, and are in static equilibrium when 0 = 4.95°. What is L (in m)? Assume the cords are massless. 0.180 Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your Coulomb force equation. m (b) What If? The charge on both spheres is increased until each cord makes an angle of 0 = 9.90° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case? 9.60 Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. ncarrow_forward
- A proton moves at 5.20 x 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 83.33 Your response differs from the correct answer by more than 10%. Double check your calculations. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 2.77 Your response differs from the correct answer by more than 10%. Double check your calculations. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. = 5.4e5 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + 6.68e4 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step…arrow_forward(a) A physics lab instructor is working on a new demonstration. She attaches two identical copper spheres with mass m = 0.180 g to cords of length L as shown in the figure. A Both spheres have the same charge of 6.80 nC, and are in static equilibrium when = 4.95°. What is L (in m)? Assume the cords are massless. 0.150 Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your Coulomb force equation. m (b) What If? The charge on both spheres is increased until each cord makes an angle of 0 = 9.90° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case? 13.6 ☑ Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. nCarrow_forwardA proton moves at 5.20 x 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 10³ N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 1.15e-7 ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 5.33e-3 ☑ Your response is off by a multiple of ten. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. | ↑ + jkm/sarrow_forward
- A proton moves at 5.20 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.)arrow_forwardThe figure below shows the electric field lines for two charged particles separated by a small distance. 92 91 (a) Determine the ratio 91/92. 1/3 × This is the correct magnitude for the ratio. (b) What are the signs of q₁ and 92? 91 positive 92 negative ×arrow_forwardPlease help me solve this one more detail, thanksarrow_forward
- A dielectric-filled parallel-plate capacitor has plate area A = 20.0 ccm2 , plate separaton d = 10.0 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V = 12.5 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Find the energy U1 of the dielectric-filled capacitor. The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2 of the capacitor at the moment when the capacitor is half-filled with the dielectric. The capacitor is now disconnected from the battery, and the dielectric plate is slowly removed the rest of the way out of the capacitor. Find the new energy of the capacitor, U3. In the process of removing the remaining portion of the dielectric from the disconnected capacitor, how much work W is done by the external agent acting on the dielectric?arrow_forwardIn (Figure 1) C1 = 6.00 μF, C2 = 6.00 μF, C3 = 12.0 μF, and C4 = 3.00 μF. The capacitor network is connected to an applied potential difference Vab. After the charges on the capacitors have reached their final values, the voltage across C3 is 40.0 V. What is the voltage across C4? What is the voltage Vab applied to the network? Please explain everything in steps.arrow_forwardI need help with these questions again. A step by step working out with diagrams that explains more clearlyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax


An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
A Level Physics – Ideal Gas Equation; Author: Atomi;https://www.youtube.com/watch?v=k0EFrmah7h0;License: Standard YouTube License, CC-BY