General Physics, 2nd Edition
2nd Edition
ISBN: 9780471522782
Author: Morton M. Sternheim
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 23, Problem 68E
To determine
The interference pattern formed by powdered sodium chloride crystal.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An x-ray was used to examine a sample of chromium having a BCC crystal structure.Using x-rays having a wavelength of 0.1682 nm, a diffractometer is used. The distorting (010) aircraft is the plane. Chromium has an atomic radius of 0.125 nm.
A)Compute the interplanar spacing and Calculate the diffraction angle. Assume second-order of diffraction, n = 2.
When a diffraction pattern of a crystalline solid is recorded using an X-ray beam of wavelength 0.26 nm, the first order diffraction peak occurs at a scattering angle of 35°. If the error in the measurements of angle and wavelength are 1° and 0.01 nm respectively, then determine the error in measuring the interplanar spacing. (a) 22.86 nm (b) 32.38 nm (c) 15.2 nm (d) 13.2 nm
X-ray diffractionanalysis(using a Cu anode)of a specimen with a known cubiccrystal structure reveals that the peak generated as a result of reflection from the (110) plane occurs at a 2θ=32°. Determine the unit cell volume of this material
Chapter 23 Solutions
General Physics, 2nd Edition
Ch. 23 - Prob. 1RQCh. 23 - Prob. 2RQCh. 23 - Prob. 3RQCh. 23 - Prob. 4RQCh. 23 - Prob. 5RQCh. 23 - Prob. 6RQCh. 23 - Prob. 7RQCh. 23 - Prob. 8RQCh. 23 - Prob. 9RQCh. 23 - Prob. 10RQ
Ch. 23 - Prob. 11RQCh. 23 - Prob. 12RQCh. 23 - Prob. 1ECh. 23 - Prob. 2ECh. 23 - Prob. 3ECh. 23 - Prob. 4ECh. 23 - Prob. 5ECh. 23 - Prob. 6ECh. 23 - Prob. 7ECh. 23 - Prob. 8ECh. 23 - Prob. 9ECh. 23 - Prob. 10ECh. 23 - Prob. 11ECh. 23 - Prob. 12ECh. 23 - Prob. 13ECh. 23 - Prob. 14ECh. 23 - Prob. 15ECh. 23 - Prob. 16ECh. 23 - Prob. 17ECh. 23 - Prob. 18ECh. 23 - Prob. 19ECh. 23 - Prob. 20ECh. 23 - Prob. 21ECh. 23 - Prob. 22ECh. 23 - Prob. 23ECh. 23 - Prob. 24ECh. 23 - Prob. 25ECh. 23 - Prob. 26ECh. 23 - Prob. 27ECh. 23 - Prob. 28ECh. 23 - Prob. 29ECh. 23 - Prob. 30ECh. 23 - Prob. 31ECh. 23 - Prob. 32ECh. 23 - Prob. 33ECh. 23 - Prob. 34ECh. 23 - Prob. 35ECh. 23 - Prob. 36ECh. 23 - Prob. 37ECh. 23 - Prob. 38ECh. 23 - Prob. 39ECh. 23 - Prob. 40ECh. 23 - Prob. 41ECh. 23 - Prob. 42ECh. 23 - Prob. 43ECh. 23 - Prob. 44ECh. 23 - Prob. 45ECh. 23 - Prob. 46ECh. 23 - Prob. 47ECh. 23 - Prob. 48ECh. 23 - Prob. 49ECh. 23 - Prob. 50ECh. 23 - Prob. 51ECh. 23 - Prob. 52ECh. 23 - Prob. 53ECh. 23 - Prob. 54ECh. 23 - Prob. 55ECh. 23 - Prob. 56ECh. 23 - Prob. 57ECh. 23 - Prob. 58ECh. 23 - Prob. 59ECh. 23 - Prob. 60ECh. 23 - Prob. 61ECh. 23 - Prob. 62ECh. 23 - Prob. 63ECh. 23 - Prob. 64ECh. 23 - Prob. 65ECh. 23 - Prob. 66ECh. 23 - Prob. 67ECh. 23 - Prob. 68ECh. 23 - Prob. 69ECh. 23 - Prob. 70ECh. 23 - Prob. 71ECh. 23 - Prob. 72ECh. 23 - Prob. 73ECh. 23 - Prob. 74ECh. 23 - Prob. 75ECh. 23 - Prob. 76ECh. 23 - Prob. 77ECh. 23 - Prob. 78ECh. 23 - Prob. 79ECh. 23 - Prob. 80E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The structure of the NaCl crystal forms reflecting planes 0.541 nm apart. What is the smallest angle, measured from these planes, at which X-ray diffraction can be observed, if X-rays of wavelength 0.085 nm are used?arrow_forwardAs a single crystal is rotated in an x-ray spectrometer (Fig. 3.22a), many parallel planes of atoms besides AA and BB produce strong diffracted beams. Two such planes are shown in Figure P3.38. (a) Determine geometrically the interplanar spacings d1 and d2 in terms of d0. (b) Find the angles (with respect to the surface plane AA) of the n = 1, 2, and 3 intensity maxima from planes with spacing d1. Let = 0.626 and d0 = 4.00 . Note that a given crystal structure (for example, cubic) has interplanar spacings with characteristic ratios, which produce characteristic diffraction patterns. In this way, measurement of the angular position of diffracted x-rays may be used to infer the crystal structure. Figure P3.38 Atomic planes in a cubic lattice.arrow_forwardPotassium chloride (KCI) has a set of crystal planes separated by a distance of d= 0.34 nm. At what glancing angle 0 to these planes would the first-order Bragg maximum occur for X-rays of wavelength 0.05 nm?arrow_forward
- An electric current through hydrogen gas produces several distinct wavelengths of visible light. What are the wavelengths of the hydrogen spectrum, if they form first-order maxima at angles of 24.2o,25.7o,29.1o,and 41.0o when projected on a diffraction grating having 10,000 lines per centimeter?arrow_forwardAn x-ray beam of a certain wavelength is incident on an NaCl crystal, at 30.0° to a certain family of reflecting planes of spacing 39.8 pm. If the reflection from those planes is of the first order, what is the wavelength of the x rays?arrow_forwardX rays of wavelength 0.0850 nm are scattered from the atoms of a crystal. The second-order maximum in the Bragg reflection occurs when the angle θ in Fig is 21.5°. What is the spacing between adjacent atomic planes in the crystal?arrow_forward
- 10 mW of light is incident on a piece of GaAs which is 0.2mm thick. The incident light is a mixture of 5mW at λ1=1.553μm and 5mW at λ2=0.828μm. A total of 7mW mixed light exits out of the GaAs. Assume no reflections at the air/GaAs interface and any light generated by recombination won’t exit the GaAs. What are the absorption coefficients, α, for two different wavelengths?arrow_forwardlet a beam of x rays of wavelength 0.125 nm be incident on an NaCl crystal at angle u 45.0° to the top face of the crystal and a family of reflecting planes. Let the reflecting planes have separation d = 0.252 nm. The crystal is turned through angle f around an axis perpendicular to the plane of the page until these reflecting planes give diffraction maxima. What are the (a) smaller and (b) larger value of f if the crystal is turned clockwise and the (c) smaller and (d) larger value of f if it is turned counterclockwise?arrow_forwardPotassium chloride (KCl) is an ionic solid with a crystalline structure whose planes are 0.314 nm apart. X-rays of wavelength 0.267 nm are used in a Bragg diffraction experiment to study the crystalline structure. At what angle with respect to the atomic planes in the crystal would you expect the first strong reflection to occur?arrow_forward
- You are performing research in an x-ray diffraction laboratory. In one of your experiments, you wish to study x-ray diffraction from a crystal of NaCl using x-rays of wavelength 0.136 nm. (a) For how many angles do you expect to detect a diffraction maximum from the crystal if your x-rays are reflecting from the shaded planes as shown? (b) In another experiment, the crystal is rotated so that the reflections of x-rays arise from parallel planes of sodium and chlorine ions. as shown shows portions of these planes containing atoms within the unit cell. Imagine extending these portions outward to form large planes, one with only sodium ions and the other with only chlorine ions. Considering these planes, for how many angles do you expect to detect a diffraction maximum from the crystal using the same x-rays?arrow_forwardin the Cauchy equation if A=1.614 and B=0.0296µm^2 and wavelength is 549.5nm, the index of refraction n equal to . 1.687 O 1.645 1.598 O 1.712arrow_forwardSodium’s emission lines at 589.0 nm and 589.6 nm pass through a diffraction grating and form two m 5 11 maxima on a viewing screen. Would the spacing between the two lines increase, decrease, or remain unchanged (indicate your answers with I, D, or U) if the grating is exchanged (a) for one having fewer lines per millimeter, or (b) for one with twice the total number of lines? What if (c) the intensity of the light is doubled, or (d) the maxima are viewed in second order?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning