Concept explainers
Example 23.3 derives the exact expression for the electric field at a point on the axis of a uniformly charged disk. Consider a disk of radius R = 3.00 cm having a uniformly distributed charge of +5.20 μC. (a) Using the result of Example 23.3, compute the electric field at a point on the axis and 3.00 mm from the center. (b) What If? Explain how the answer to part (a) compares with the field computed from the near-field approximation E = σ/2ϵ0. (We derived this expression in Example 23.3.) (c) Using the result of Example 23.3, compute the electric field at a point on the axis and 30.0 cm from the center of the disk. (d) What If? Explain how the answer to part (c) compares with the electric field obtained by treating the disk as a +5.20-μC charged particle at a distance of 30.0 cm.
(a)

The electric field at a point on the axis at a distance
Answer to Problem 5P
The electric field at a point on the axis and
Explanation of Solution
The value of the charge is
The formula to calculate the surface charge density is,
The formula to calculate the area is,
Substitute
Substitute
The formula to calculate the electric field at a point from the center of a uniformly charged disk is,
Here,
Conclusion:
Substitute
Therefore, the electric field at a point on the axis and
(b)

The change in electric field when calculated using near field approximation.
Answer to Problem 5P
The magnitude of electric field when computed from near field approximation is
Explanation of Solution
The formula to calculate the electric field at a point from the center of a uniformly charged disk is,
Here,
Conclusion:
Substitute
The value of electric field for uniformly charged disk for a point
The formula to calculate the percentage change with respect to the field computed from near field approximation is,
Therefore, the magnitude of electric field when computed from near field approximation is
(c)

The electric field at a point on the axis at a distance
Answer to Problem 5P
The electric field at a point on the axis and
Explanation of Solution
The value of the charge is
The formula to calculate the surface charge density is,
The formula to calculate the area is,
Substitute
Substitute
The formula to calculate the electric field at a point from the center of a uniformly charged disk is,
Here,
Conclusion:
Substitute
Therefore, the electric field at a point on the axis and
(d)

The change in electric field at
Answer to Problem 5P
The magnitude of electric field obtained by treating the disk as a
Explanation of Solution
The formula to calculate the electric field of a charged particle is,
Here,
Substitute
the percentage change when part (c) is compared with the field obtained by treating the disk as a
The value of electric field for uniformly charged disk at a point
The value of the electric field while approximating the disc to be a point charge is
Conclusion:
The formula to calculate the percentage change when part (c) is compared with the field obtained by treating the disk as a
Therefore, the magnitude of electric field obtained by treating the disk as a point charge at a distance of
Want to see more full solutions like this?
Chapter 23 Solutions
PHYSICS:F/SCI.+ENGRS.(LL)-W/SINGLE CARD
- Considering the cross-sectional area shown in Fig.2: 1. Determine the coordinate y of the centroid G (0, ỹ). 2. Determine the moment of inertia (I). 3. Determine the moment of inertia (Ir) (with r passing through G and r//x (// parallel). 4 cm 28 cm G3+ G 4 cm y 12 cm 4 cm 24 cm xarrow_forwardI need help understanding 7.arrow_forwardThe stress-strain diagram for a steel alloy is given in fig. 3. Determine the modulus of elasticity (E). σ (ksi) 40 30 20 10 0 0 0.0005 0.001 0.0015 0.002 0.0025 0.0030.0035 Earrow_forward
- A Van de Graff generator, if the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each other using Coulomb's Law to calculate the electrical force. Give your answer as the number of Coulombsarrow_forwardPlease help me answer the following question. I am having trouble understanding the directions of the things the question is asking for. Please include a detailed explanation and possibly drawings of the directions of Bsource, Binduced, and Iinduced.arrow_forward43. A mass må undergoes circular motion of radius R on a hori- zontal frictionless table, con- nected by a massless string through a hole in the table to a second mass m² (Fig. 5.33). If m₂ is stationary, find expres- sions for (a) the string tension and (b) the period of the circu- lar motion. m2 R m₁ FIGURE 5.33 Problem 43arrow_forward
- CH 70. A block is projected up an incline at angle 0. It returns to its initial position with half its initial speed. Show that the coefficient of ki- netic friction is μk = tano.arrow_forwardPassage Problems A spiral is an ice-skating position in which the skater glides on one foot with the other foot held above hip level. It's a required element in women's singles figure-skating competition and is related to the arabesque performed in ballet. Figure 5.40 shows Canadian skater Kaetlyn Osmond executing a spiral during her medal-winning perfor- mance at the 2018 Winter Olympics in Gangneung, South Korea. 77. From the photo, you can conclude that the skater is a. executing a turn to her left. b. executing a turn to her right. c. moving in a straight line out of the page. 78. The net force on the skater a. points to her left. b. points to her right. c. is zero. 79. If the skater were to execute the same maneuver but at higher speed, the tilt evident in the photo would be a. less. b. greater. c. unchanged. FIGURE 5.40 Passage Problems 77-80 80. The tilt angle 0 that the skater's body makes with the vertical is given ap- proximately by 0 = tan¯¹(0.5). From this you can conclude…arrow_forwardFrictionless surfarrow_forward
- 71. A 2.1-kg mass is connected to a spring with spring constant 72 k = 150 N/m and unstretched length 18 cm. The two are mounted on a frictionless air table, with the free end of the spring attached to a frictionless pivot. The mass is set into circular mo- tion at 1.4 m/s. Find the radius of its path. cor moving at 77 km/h negotiat CH —what's the minimum icient of frictioarrow_forward12. Two forces act on a 3.1-kg mass that undergoes acceleration = 0.91 0.27 m/s². If one force is -1.2î – 2.5ĵ N, what's the other?arrow_forward36. Example 5.7: You whirl a bucket of water around in a vertical circle of radius 1.22 m. What minimum speed at the top of the circle will keep the water in the bucket?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





