College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
thumb_up100%
Chapter 23, Problem 51P
The indices of refraction for violet light (λ = 400 nm) and red light (λ = 700 nm) in diamond are 2.46 and 2.41, respectively. A ray of light traveling through air strikes the diamond surface at an angle of 53.5° to the normal. Calculate the angular separation between these two colors of light in the refracted ray.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The indices of refraction for violet light (λ = 400 nm) and red light (= 700 nm) in diamond are 2.46 and 2.41,
respectively. A ray of light traveling through air strikes the diamond surface at an angle of 53.5° to the
normal. Calculate the angular separation between these two colors of light in the refracted ray.
The indices of refraction for violet light and red light in a certain kind of glass are 1.45 and 1.40, respectively. A ray of white light traveling through air
strikes the glass surface at an angle of 52.7° to the normal. Calculate the angular separation between these two colors of light in the refracted ray
inside the glass.
degrees
A ray of light is incident on an air/water interface. The ray makes an angle of theta= 33 degrees with respect to the normal of the surface. The index of the air is n1 = 1 while water is n2 = 1.33.
Numerically, what is the angle in degree?
Chapter 23 Solutions
College Physics (10th Edition)
Ch. 23 - Prob. 1CQCh. 23 - Why is the average radiation pressure on a...Ch. 23 - Prob. 3CQCh. 23 - How does the refraction of light account for the...Ch. 23 - Light requires about 8 min to travel from the sun...Ch. 23 - Prob. 6CQCh. 23 - A student claimed that, because of atmospheric...Ch. 23 - If you look at your pet fish through the corner of...Ch. 23 - How could you determine the direction of the...Ch. 23 - In three-dimensional movies, two images are...
Ch. 23 - Prob. 11CQCh. 23 - When light is incident on an interface between two...Ch. 23 - A ray is traveling in material a when it reaches...Ch. 23 - Unpolarized light with an original intensity I0...Ch. 23 - Prob. 3MCPCh. 23 - If a sinusoidal electromagnetic wave with...Ch. 23 - A plane electromagnetic wave is traveling...Ch. 23 - A ray of light going from one material into...Ch. 23 - Which of the following statements about radio...Ch. 23 - Two lasers each produce 2 mW beams. The beam of...Ch. 23 - A ray of light follows the path shown in Figure...Ch. 23 - A light beam has a wavelength of 300 nm in a...Ch. 23 - Prob. 11MCPCh. 23 - Prob. 12MCPCh. 23 - When a solar flare erupts on the surface of the...Ch. 23 - The microprocessor in a modern laptop computer...Ch. 23 - (a) How much time does it take light to travel...Ch. 23 - A geostationary communications satellite orbits...Ch. 23 - Prob. 5PCh. 23 - Prob. 6PCh. 23 - Prob. 7PCh. 23 - Prob. 8PCh. 23 - Visible light. The wavelength of visible light...Ch. 23 - Prob. 10PCh. 23 - Medical x rays. Medical x rays are taken with...Ch. 23 - Prob. 12PCh. 23 - Prob. 13PCh. 23 - Prob. 14PCh. 23 - Prob. 15PCh. 23 - Laboratory lasers. HeNe lasers are often used in...Ch. 23 - Prob. 17PCh. 23 - High-energy cancer treatment. Scientists are...Ch. 23 - Prob. 19PCh. 23 - The intensity at a certain distance from a bright...Ch. 23 - A sinusoidal electromagnetic wave from a radio...Ch. 23 - Prob. 22PCh. 23 - Prob. 23PCh. 23 - A sinusoidal electromagnetic wave emitted by a...Ch. 23 - Two plane mirrors intersect at right angles. A...Ch. 23 - Two plane mirrors A and 8 intersect at a 45 angle....Ch. 23 - Prove that when a ray of light travels at any...Ch. 23 - A light beam travels at 1.94 108 m/s in quartz....Ch. 23 - Prob. 29PCh. 23 - Light with a frequency of 5.80 1014 Hz travels in...Ch. 23 - Prob. 31PCh. 23 - Light inside the eye. The vitreous humor, a...Ch. 23 - Prob. 33PCh. 23 - A 1 55-m-tall fisherman stands at the edge of a...Ch. 23 - A light ray passes through a rectangular slab of...Ch. 23 - A glass plate having parallel faces and a...Ch. 23 - A beam of light in air makes an angle of 47.5 with...Ch. 23 - Reversibility of rays. Ray 1 of light in medium a...Ch. 23 - You (height of your eyes above the water. 1.75 m)...Ch. 23 - A parallel-sided plate of glass having a...Ch. 23 - As shown in Figure 23.53, a layer of water covers...Ch. 23 - A ray of light in diamond (index of refraction...Ch. 23 - The critical angle for total internal reflection...Ch. 23 - A ray of light is traveling in a glass cube that...Ch. 23 - Light is incident along the normal to face AB of a...Ch. 23 - Light pipe. Light enters a solid tube made of...Ch. 23 - Prob. 47PCh. 23 - A beam of light strikes a sheet of glass at an...Ch. 23 - The table gives the index of refraction of fused...Ch. 23 - Use the graph in Figure 23.29 for silicate flint...Ch. 23 - The indices of refraction for violet light ( = 400...Ch. 23 - Unpolarized light with intensity I0 is incident on...Ch. 23 - Unpolarized light is incident on two ideal...Ch. 23 - A beam of unpolarized light of intensity I0 passes...Ch. 23 - Three ideal polarizing filters are stacked, with...Ch. 23 - Light of original intensity I0 passes through two...Ch. 23 - The polarizing angle for light in air incident on...Ch. 23 - A beam of polarized light passes through a...Ch. 23 - A beam of unpolarized light in air is incident at...Ch. 23 - Plane-polarized light passes through two...Ch. 23 - The energy flow to the earth from sunlight is...Ch. 23 - Prob. 62GPCh. 23 - A powerful searchlight shines on a man. The mans...Ch. 23 - Prob. 64GPCh. 23 - Prob. 65GPCh. 23 - Prob. 66GPCh. 23 - Solar sail. NASA is doing research on the concept...Ch. 23 - A thick layer of oil is floating on the surface of...Ch. 23 - Prob. 69GPCh. 23 - A light ray in air strikes the right-angle prism...Ch. 23 - A ray of light is incident in air on a block of a...Ch. 23 - A light beam is directed parallel to the axis of a...Ch. 23 - Heart sonogram. Physicians use high-frequency (f =...Ch. 23 - A light ray refracts through a glass block having...Ch. 23 - A beaker with a mirrored bottom is filled with a...Ch. 23 - A ray of light traveling in a block of glass (n =...Ch. 23 - In a physics lab, light with wavelength 490 nm...Ch. 23 - The refractive index of a certain glass is 1.66....Ch. 23 - A thin layer of ice (n = 1.309) floats on the...Ch. 23 - Optical activity of biological molecules. Many...Ch. 23 - Passage Problems Safe exposure to electromagnetic...Ch. 23 - Doubling the frequency of a wave in the range of...Ch. 23 - The ICNIRP also has guidelines for magnetic-field...Ch. 23 - First, light with a plane of polarization at 45 to...Ch. 23 - Prob. 85PPCh. 23 - To vary the angle as well as the intensity of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
3. (I) A laser beam is directed at the Moon, 380,000 km from Earth. The beam diverges at an angle? (Fig. 8-40) ...
Physics: Principles with Applications
21. Two -diameter aluminum electrodes are spaced apart.
The electrodes are connected to a battery.
...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
For a solid, we also define the linear thermal expansion coefficient, a, as the fractional increase in length p...
An Introduction to Thermal Physics
What is the direction of the magnetic force on the current in earth of the six cases in Figure 22.53?
College Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forwardThe index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forwardLight passes from a material with index of refraction 1.3 into one with index of refraction 1.2. Compared with the incident ray, what happens to the refracted ray? (a) It bends toward the normal. (b) It is undeflected. (c) It bends away from the normal.arrow_forward
- What happens to a light wave when it travels from air into glass? (a) Its speed remains the same. (b) Its speed increases. (c) Its wavelength increases. (d) Its wavelength remains the same. (e) Its frequency remains the same.arrow_forwardUnpolarized light in vacuum is incident onto a sheet of glass with index of refraction n. The reflected and refracted rays are perpendicular to each other. Find the angle of incidence. This angle is called Brewsters angle or the polarizing angle. In this situation, the reflected light is linearly polarized, with its electric field restricted to be perpendicular to the plane containing the rays and the normal.arrow_forwardA ray of light strikes a flat, 2.00-cm-thick block of glass (n = 1.50) at ail angle of 30.0 with respect to the normal (Fig. P22.18). (a) Find the angle of refraction at the lop surface. (b) Find the angle of incidence at the bottom surface and the refracted angle. (c) Find the lateral distance d by which the light beam is shifted. (d) Calculate the speed of light in the glass and (e) the time required for the light to pass through the glass block. (f) Is the travel time through the block affected by the angle of incidence? Explain.arrow_forward
- Light enters a prism of crown glass and refracts at an angle of 5.00 with respect to the normal at the interface. The crown glass has a mean index of refraction of 1.51. It is combined with one flint glass prism (n = 1.65) to produce no net deviation. a. Find the apex angle of the flint glass. b. Assume the index of refraction for violet light (v = 430 nm) is nv = 1.528 and the index of refraction for red light (r = 768 nm) is nr = 1.511 for crown glass. For flint glass using the same wavelengths, nv = 1.665 and nr = 1.645. Find the net dispersion.arrow_forwardA ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of glass at 80°. What is the angular separation between the refracted red and refracted blue beams while they are in the glass? (The respective indices of refraction for the blue light and the red light are 1.4636 and 1.4561.) 0.27° 0.33° 0.36° 0.46° 0.54°arrow_forwardIn the figure, light from ray A refracts from material 1 (n1 = 1.60) into a thin layer of material 2 (n2 = 1.80), crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3 (n3 = 1.3). (a) What is the value of incident angle θA? (b) If θA is decreased, does part of the light refract into material 3? Light from ray B refracts from material 1 into the thin layer, crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3. (c) What is the value of incident angle θB? (d) If θB is decreased, does part of the light refract into material 3?arrow_forward
- The indexes of refraction for violet light (l = 400 nm) and red light (l = 700 nm) in diamond are 2.46 and 2.41, respectively. A ray of light traveling through air strikes the diamond surface at an angle of 53.5 to the normal. Calculate the angular separation between these two colors of light in the refracted ray.arrow_forwardA light ray in glass (refractive index 1.57) arrives at the glass-water interface at an angle of 0 = 48° with the normal. The index of refraction of water is 1.33. What is the angle of refraction @ that a refracted ray makes with the normal ? water glass O 42° O 56° O 61° O 20°arrow_forwardA ray of white light traveling through air enters a triangular prism that has an index of refraction of 1.315 for the red end of the spectrum and 1.345 for the violet end and an apex angle of 72°. If the ray has an angle of incidence of 63° with respect to the normal of the interface boundary, what's the angular separation between the red and violet ends of the spectrum within the prism?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY