College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
thumb_up100%
Chapter 23, Problem 45P
Light is incident along the normal to face AB of a prism that has a refractive index n and an angle α = 30°, as shown in Figure 23.54. When the prism is in air, the light undergoes total internal reflection. However, when the prism is immersed in water, a faint refracted ray emerges at an angle of 80° to the normal of face AC. (a) Determine n. (b) What material was used to make the prism?
Figure 23.54
Problem 45.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
K
A light ray with a wavelength of 589 nanometers (produced by a sodium lamp) traveling through air makes an angle of
= to find the angle of refraction,
V2
sin 0₁ V₁
y
incidence of 55° on a smooth, flat slab of dense flint glass. Use Snell's Law,
sin 02
where the index of refraction is 1.66.
...
The angle of refraction is approximately degrees.
(Type an integer or decimal rounded to two decimal places as needed.)
A flat piece of glass covers the top of a vertical cylinder that is completely filled with water. If a ray of light traveling in the glass is incident on the interface with the water at an angle of θa = 36.2°, the ray refracted into the water makes an angle of 49.8o with the normal to the interface. What is the smallest value of the incident angle ua for which none of the ray refracts into the water?
The indices of refraction for violet light (λ = 400 nm) and red light (= 700 nm) in diamond are 2.46 and 2.41,
respectively. A ray of light traveling through air strikes the diamond surface at an angle of 53.5° to the
normal. Calculate the angular separation between these two colors of light in the refracted ray.
Chapter 23 Solutions
College Physics (10th Edition)
Ch. 23 - Prob. 1CQCh. 23 - Why is the average radiation pressure on a...Ch. 23 - Prob. 3CQCh. 23 - How does the refraction of light account for the...Ch. 23 - Light requires about 8 min to travel from the sun...Ch. 23 - Prob. 6CQCh. 23 - A student claimed that, because of atmospheric...Ch. 23 - If you look at your pet fish through the corner of...Ch. 23 - How could you determine the direction of the...Ch. 23 - In three-dimensional movies, two images are...
Ch. 23 - Prob. 11CQCh. 23 - When light is incident on an interface between two...Ch. 23 - A ray is traveling in material a when it reaches...Ch. 23 - Unpolarized light with an original intensity I0...Ch. 23 - Prob. 3MCPCh. 23 - If a sinusoidal electromagnetic wave with...Ch. 23 - A plane electromagnetic wave is traveling...Ch. 23 - A ray of light going from one material into...Ch. 23 - Which of the following statements about radio...Ch. 23 - Two lasers each produce 2 mW beams. The beam of...Ch. 23 - A ray of light follows the path shown in Figure...Ch. 23 - A light beam has a wavelength of 300 nm in a...Ch. 23 - Prob. 11MCPCh. 23 - Prob. 12MCPCh. 23 - When a solar flare erupts on the surface of the...Ch. 23 - The microprocessor in a modern laptop computer...Ch. 23 - (a) How much time does it take light to travel...Ch. 23 - A geostationary communications satellite orbits...Ch. 23 - Prob. 5PCh. 23 - Prob. 6PCh. 23 - Prob. 7PCh. 23 - Prob. 8PCh. 23 - Visible light. The wavelength of visible light...Ch. 23 - Prob. 10PCh. 23 - Medical x rays. Medical x rays are taken with...Ch. 23 - Prob. 12PCh. 23 - Prob. 13PCh. 23 - Prob. 14PCh. 23 - Prob. 15PCh. 23 - Laboratory lasers. HeNe lasers are often used in...Ch. 23 - Prob. 17PCh. 23 - High-energy cancer treatment. Scientists are...Ch. 23 - Prob. 19PCh. 23 - The intensity at a certain distance from a bright...Ch. 23 - A sinusoidal electromagnetic wave from a radio...Ch. 23 - Prob. 22PCh. 23 - Prob. 23PCh. 23 - A sinusoidal electromagnetic wave emitted by a...Ch. 23 - Two plane mirrors intersect at right angles. A...Ch. 23 - Two plane mirrors A and 8 intersect at a 45 angle....Ch. 23 - Prove that when a ray of light travels at any...Ch. 23 - A light beam travels at 1.94 108 m/s in quartz....Ch. 23 - Prob. 29PCh. 23 - Light with a frequency of 5.80 1014 Hz travels in...Ch. 23 - Prob. 31PCh. 23 - Light inside the eye. The vitreous humor, a...Ch. 23 - Prob. 33PCh. 23 - A 1 55-m-tall fisherman stands at the edge of a...Ch. 23 - A light ray passes through a rectangular slab of...Ch. 23 - A glass plate having parallel faces and a...Ch. 23 - A beam of light in air makes an angle of 47.5 with...Ch. 23 - Reversibility of rays. Ray 1 of light in medium a...Ch. 23 - You (height of your eyes above the water. 1.75 m)...Ch. 23 - A parallel-sided plate of glass having a...Ch. 23 - As shown in Figure 23.53, a layer of water covers...Ch. 23 - A ray of light in diamond (index of refraction...Ch. 23 - The critical angle for total internal reflection...Ch. 23 - A ray of light is traveling in a glass cube that...Ch. 23 - Light is incident along the normal to face AB of a...Ch. 23 - Light pipe. Light enters a solid tube made of...Ch. 23 - Prob. 47PCh. 23 - A beam of light strikes a sheet of glass at an...Ch. 23 - The table gives the index of refraction of fused...Ch. 23 - Use the graph in Figure 23.29 for silicate flint...Ch. 23 - The indices of refraction for violet light ( = 400...Ch. 23 - Unpolarized light with intensity I0 is incident on...Ch. 23 - Unpolarized light is incident on two ideal...Ch. 23 - A beam of unpolarized light of intensity I0 passes...Ch. 23 - Three ideal polarizing filters are stacked, with...Ch. 23 - Light of original intensity I0 passes through two...Ch. 23 - The polarizing angle for light in air incident on...Ch. 23 - A beam of polarized light passes through a...Ch. 23 - A beam of unpolarized light in air is incident at...Ch. 23 - Plane-polarized light passes through two...Ch. 23 - The energy flow to the earth from sunlight is...Ch. 23 - Prob. 62GPCh. 23 - A powerful searchlight shines on a man. The mans...Ch. 23 - Prob. 64GPCh. 23 - Prob. 65GPCh. 23 - Prob. 66GPCh. 23 - Solar sail. NASA is doing research on the concept...Ch. 23 - A thick layer of oil is floating on the surface of...Ch. 23 - Prob. 69GPCh. 23 - A light ray in air strikes the right-angle prism...Ch. 23 - A ray of light is incident in air on a block of a...Ch. 23 - A light beam is directed parallel to the axis of a...Ch. 23 - Heart sonogram. Physicians use high-frequency (f =...Ch. 23 - A light ray refracts through a glass block having...Ch. 23 - A beaker with a mirrored bottom is filled with a...Ch. 23 - A ray of light traveling in a block of glass (n =...Ch. 23 - In a physics lab, light with wavelength 490 nm...Ch. 23 - The refractive index of a certain glass is 1.66....Ch. 23 - A thin layer of ice (n = 1.309) floats on the...Ch. 23 - Optical activity of biological molecules. Many...Ch. 23 - Passage Problems Safe exposure to electromagnetic...Ch. 23 - Doubling the frequency of a wave in the range of...Ch. 23 - The ICNIRP also has guidelines for magnetic-field...Ch. 23 - First, light with a plane of polarization at 45 to...Ch. 23 - Prob. 85PPCh. 23 - To vary the angle as well as the intensity of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
5. Why might a high-formula-mass alcohol be insoluble in water?
A high-formula-mass alcohol is too attracted to...
Conceptual Physical Science (6th Edition)
Carefully examine a bulb. Two wires extend from the filament of the bulb into the base. You probably cannot see...
Tutorials in Introductory Physics
41. A 0.300 kg oscillator has a speed of 95.4cm/s when its displacement is 3.00cm and 71.4 cm/s when its displ...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
19. A block attached to a spring with unknown spring constant oscillates with a period of 2.00 s. What is the p...
College Physics: A Strategic Approach (4th Edition)
Compared to lighter hydrocarbons, do heavier hydrocarbons tend to produce more or less carbon dioxide upon comb...
Conceptual Integrated Science
A block of mass m1 undergoes a one-dimensional elastic collision with an initially stationary block of mass m2....
Essential University Physics (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forwardA ray of light strikes a flat, 2.00-cm-thick block of glass (n = 1.50) at ail angle of 30.0 with respect to the normal (Fig. P22.18). (a) Find the angle of refraction at the lop surface. (b) Find the angle of incidence at the bottom surface and the refracted angle. (c) Find the lateral distance d by which the light beam is shifted. (d) Calculate the speed of light in the glass and (e) the time required for the light to pass through the glass block. (f) Is the travel time through the block affected by the angle of incidence? Explain.arrow_forwardThe index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forward
- What happens to a light wave when it travels from air into glass? (a) Its speed remains the same. (b) Its speed increases. (c) Its wavelength increases. (d) Its wavelength remains the same. (e) Its frequency remains the same.arrow_forwardThe index of refraction for violet light in silica flint glass is 1.66, and that for red light is 1.62. A) What is the angular spread (in degrees) of visible light passing through a prism of apex angle 60.0° if the angle of incidence is 51.0°? B) What is the angular spread (in degrees) of visible light passing through a prism of apex angle 60.0° if the angle of incidence is 90°?arrow_forwardThe figure below shows the path of a beam of light through several layers with different indices of refraction. (Assume n = 1.08.) P0₂ n = 1.60 n = 1.40 n = 1.20 114 (a) If 8₁ = 36.0°, what is the angle 8₂ of the emerging beam? (b) What is the smallest incident angle 0₁ to have total internal reflection at the surface between the medium with n = 1.20 and the medium with n = 1.08?arrow_forward
- A ray of light in glass strikes a water-glass interface at an angle of incidence equal to one-third the critical angle for that interface. The index of refraction for water is 1.33, and for the glass it is 1.43. What angle does the refracted ray in the water make with the normal? O 37.0° O 57.5° O 24.6° O 42.3° 32.2⁰arrow_forwardA light ray propagates in Material 1 with index of refraction n = 1.15, strikes an interface, then passes into Material 2 with index of refraction n = 1.31. The angle of incidence at the interface is 0 = 23.5°. Determine the angle of refraction 0. Material 1 Material 2 02 =arrow_forwardThe thickness of a flint glass plate is 9 cm thick. The index of refraction is 1.45. A ray of incident light strikes the upper surface at angle = 49 degrees, with respect to the normal direction. Some of the light passes through the glass and exits through the lower surface. What is the lateral displacement of the ray where it emerges from the lower surface? (in cm) OA: 2.609 OB: 3.784 OC: 5.486 OD: 7.955 OE: 11.535 OF: 16.725 |OG: 24.251 OH: 35.164arrow_forward
- The figure below shows the path of a beam of light through several layers with different indices of refraction. (Assume n. 1.08.) n = 1.60 n = 1.40 n = 1.20 (a) If 01 36.0°, what is the angle 0, of the emerging beam? %D (b) What is the smallest incident angle 0, to have total internal reflection at the surface between the medium with n = 1.20 and the medium withn, = 1.08?arrow_forwardIn Figure (a), a beam of light in material 1 is incident on a boundary at an angle of 28°. The extent to which the light is bent due to refraction depends, in part, on the index of refraction n2 of material 2. Figure (b) gives the angle of refraction 02 versus n2 for a range of possible n2 values, from na = 1.40 to np = 1.97. What is the speed of light in material 1? 38 28 28° 18° (a) (b) Number Units the tolerance is +/-5%arrow_forwardA parallel sided plate of glass with an index of refraction of 1.60 is in contact with the surface of water (n=1.33) in a tank. A ray coming from above makes an angle of incidence of 30.0° with the normal to the top surface of the glass plate. (a) What is the speed of light in the glass plate? (b) What is the critical angle between the glass and the water? (c) What angle does this ray make with the normal in the water? (d) Include a diagram of the situation. [Diagram 3 pts.]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY