In Exercises 41-64, a. Use the Leading Coefficient Test to determine the graph’s end behavior. b. Find the x-intercepts. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each intercept. c. Find the y-intercept. d. Determine whether the graph has y-axis symmetry, origin symmetry, or neither. e. If necessary, find a few additional points and graph the function. Use the maximum number of turning points to check whether it is drawn correctly. f ( x ) = x 3 + 2 x 2 − x − 2
In Exercises 41-64, a. Use the Leading Coefficient Test to determine the graph’s end behavior. b. Find the x-intercepts. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each intercept. c. Find the y-intercept. d. Determine whether the graph has y-axis symmetry, origin symmetry, or neither. e. If necessary, find a few additional points and graph the function. Use the maximum number of turning points to check whether it is drawn correctly. f ( x ) = x 3 + 2 x 2 − x − 2
Solution Summary: The following table illustrates how the graph's end behavior depends on the leading coefficient and the degree of the polynomial.
Use undetermined coefficients to find the particular solution to
y"-2y-4y=3t+6
Yp(t) =
Car A starts from rest at t = 0 and travels along a straight road with a constant acceleration of 6 ft/s^2 until it reaches a speed of 60ft/s. Afterwards it maintains the speed. Also, when t = 0, car B located 6000 ft down the road is traveling towards A at a constant speed of 80 ft/s. Determine the distance traveled by Car A when they pass each other.Write the solution using pen and draw the graph if needed.
The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.
Chapter 2 Solutions
MyLab Math with Pearson eText -- Standalone Access Card -- for Precalculus (6th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Interpreting Graphs of Quadratic Equations (GMAT/GRE/CAT/Bank PO/SSC CGL) | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=BHgewRcuoRM;License: Standard YouTube License, CC-BY
Solve a Trig Equation in Quadratic Form Using the Quadratic Formula (Cosine, 4 Solutions); Author: Mathispower4u;https://www.youtube.com/watch?v=N6jw_i74AVQ;License: Standard YouTube License, CC-BY