
Calculus: Early Transcendentals, Books a la Carte, and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition)
3rd Edition
ISBN: 9780134996684
Author: William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2.3, Problem 3QC
Evaluate
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Vectors u and v are shown on the graph.Part A: Write u and v in component form. Show your work. Part B: Find u + v. Show your work.Part C: Find 5u − 2v. Show your work.
Vectors u = 6(cos 60°i + sin60°j), v = 4(cos 315°i + sin315°j), and w = −12(cos 330°i + sin330°j) are given. Use exact values when evaluating sine and cosine.Part A: Convert the vectors to component form and find −7(u • v). Show every step of your work.Part B: Convert the vectors to component form and use the dot product to determine if u and w are parallel, orthogonal, or neither. Justify your answer.
Suppose that one factory inputs its goods from two different plants, A and B, with different costs, 3 and 7
each respective. And suppose the price function in the market is decided as p(x, y) = 100 - x - y where
x and y are the demand functions and 0 < x, y. Then as
x =
y=
the factory can attain the maximum profit,
Chapter 2 Solutions
Calculus: Early Transcendentals, Books a la Carte, and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition)
Ch. 2.1 - In Example 1, what is the average velocity between...Ch. 2.1 - Explain the difference between average velocity...Ch. 2.1 - In Figure 2.5, is mtan at t=2 greater than or less...Ch. 2.1 - Suppose s(t) is the position of an object moving...Ch. 2.1 - Suppose s(t) is the position of an object moving...Ch. 2.1 - Basic Skills 7. Average velocity The function s(t)...Ch. 2.1 - Average velocity The function s(t) represents the...Ch. 2.1 - Average velocity The table gives the position s(t)...Ch. 2.1 - Average velocity The graph gives the position s(t)...Ch. 2.1 - Instantaneous velocity The following table gives...
Ch. 2.1 - Instantaneous velocity The following table gives...Ch. 2.1 - What is the slope of the secant Line that passes...Ch. 2.1 - Describe a process for finding the slope of the...Ch. 2.1 - Describe the parallels between finding the...Ch. 2.1 - Given the functionf(x)=16x2+64x, complete the...Ch. 2.1 - Average velocity The position of an object moving...Ch. 2.1 - Average velocity The position of an object moving...Ch. 2.1 - Average velocity Consider the position function...Ch. 2.1 - Average velocity Consider the position function...Ch. 2.1 - Instantaneous velocity Consider the position...Ch. 2.1 - Instantaneous velocity Consider the position...Ch. 2.1 - Instantaneous velocity Consider the position...Ch. 2.1 - Instantaneous velocity Consider the position...Ch. 2.1 - Instantaneous velocity For the following position...Ch. 2.1 - Instantaneous velocity For the following position...Ch. 2.1 - Instantaneous velocity For the following position...Ch. 2.1 - Instantaneous velocity For the following position...Ch. 2.1 - Slopes of tangent lines For the following...Ch. 2.1 - Slopes of tangent lines For the following...Ch. 2.1 - Slopes of tangent lines For the following...Ch. 2.1 - Slopes of tangent lines For the following...Ch. 2.1 - Tangent lines with zero slope a. Graph the...Ch. 2.1 - Tangent lines with zero slope a. Graph the...Ch. 2.1 - Zero velocity A projectile is fired vertically...Ch. 2.1 - Impact speed A rock is dropped off the edge of a...Ch. 2.1 - Slope of tangent line Given the function f(x) = 1 ...Ch. 2.2 - In Example 1, suppose we redefine the function at...Ch. 2.2 - Why is the graph of y=cos(1/x) difficult to plot...Ch. 2.2 - Explain the meaning of limxaf(x)=L.Ch. 2.2 - True or false: When limxaf(x) exists, it always...Ch. 2.2 - Finding limits from a graph Use the graph of h in...Ch. 2.2 - Finding limits from a graph Use the graph of g in...Ch. 2.2 - Finding limits from a graph Use the graph of f in...Ch. 2.2 - Finding limits from a graph Use the graph of f in...Ch. 2.2 - Estimating a limit from tables Let f(x)=x24x2. a....Ch. 2.2 - Estimating a limit from tables Let f(x)=x31x1. a....Ch. 2.2 - Estimating a limit numerically Let g(t)=t9t3. a....Ch. 2.2 - Estimating a limit numerically Let f(x) = (1 +...Ch. 2.2 - Explain the meaning of limxa+f(x)=L.Ch. 2.2 - Explain the meaning of limxaf(x)=L.Ch. 2.2 - If limxaf(x)=L and limxa+f(x)=M, where L and M are...Ch. 2.2 - Let g(x)=x34x8|x2| a. Calculate g(x) for each...Ch. 2.2 - Use the graph of f in the figure to find the...Ch. 2.2 - What are the potential problems of using a...Ch. 2.2 - Finding limits from a graph Use the graph of f in...Ch. 2.2 - One-sided and two-sided limits Use the graph of g...Ch. 2.2 - Evaluating limits graphically Sketch a graph of f...Ch. 2.2 - Evaluating limits graphically Sketch a graph of f...Ch. 2.2 - Evaluating limits graphically Sketch a graph of f...Ch. 2.2 - Evaluating limits graphically Sketch a graph of f...Ch. 2.2 - Evaluating limits graphically Sketch a graph of f...Ch. 2.2 - Evaluating limits graphically Sketch a graph of f...Ch. 2.2 - Evaluating limits graphically Sketch a graph of f...Ch. 2.2 - Evaluating limits graphically Sketch a graph of f...Ch. 2.2 - Estimating limits graphically and numerically Use...Ch. 2.2 - Estimating limits graphically and numerically Use...Ch. 2.2 - Estimating limits graphically and numerically Use...Ch. 2.2 - Estimating limits graphically and numerically Use...Ch. 2.2 - Estimating limits graphically and numerically Use...Ch. 2.2 - Estimating limits graphically and numerically Use...Ch. 2.2 - Further Explorations 27. Explain why or why not...Ch. 2.2 - The Heaviside function The Heaviside function is...Ch. 2.2 - Postage rates Assume postage for sending a...Ch. 2.2 - Calculator limits Estimate the following limits...Ch. 2.2 - Calculator limits Estimate the following limits...Ch. 2.2 - Calculator limits Estimate the following limits...Ch. 2.2 - Calculator limits Estimate the following limits...Ch. 2.2 - Calculator limits Estimate the following limits...Ch. 2.2 - Calculator limits Estimate the following limits...Ch. 2.2 - Calculator limits Estimate the following limits...Ch. 2.2 - Strange behavior near x = 0 a. Create a table of...Ch. 2.2 - Strange behavior near x = 0 a. Create a table of...Ch. 2.2 - Sketching graphs of functions Sketch the graph of...Ch. 2.2 - Sketching graphs of functions Sketch the graph of...Ch. 2.2 - Sketching graphs of functions Sketch the graph of...Ch. 2.2 - Sketching graphs of functions Sketch the graph of...Ch. 2.2 - Sketching graphs of functions Sketch the graph of...Ch. 2.2 - A step function Let f(x)=xx, for x 0. a. Sketch a...Ch. 2.2 - The floor function For any real number x, the...Ch. 2.2 - The ceiling function For any real number x, the...Ch. 2.2 - Limits of even functions A function f is even if...Ch. 2.2 - Limits of odd functions A function g is odd if...Ch. 2.2 - Limits by graphs a. Use a graphing utility to...Ch. 2.2 - Limits by graphs Graph f(x)=sinnxx, for n = 1, 2,...Ch. 2.2 - Limits by graphs Use a graphing utility to plot...Ch. 2.3 - Use Theorem 2.4 to evaluate limx2(2x48x16) and...Ch. 2.3 - Use Theorem 2.4 to compute limx15x43x2+8x6x+1.Ch. 2.3 - Evaluate limx5x27x+10x5.Ch. 2.3 - Suppose f satisfies 1f(x)1+x26 for all values of x...Ch. 2.3 - How is limxap(x) calculated if p is a polynomial...Ch. 2.3 - Evaluate limx1(x3+3x23x+1).Ch. 2.3 - For what values of a does limxar(x)=r(a) if r is a...Ch. 2.3 - Evaluate limx4(x44x13x1).Ch. 2.3 - Explain why limx3x27x+12x3=limx3(x4) and then...Ch. 2.3 - Evaluate limx5(4x2100x5).Ch. 2.3 - Applying limit laws Assume limx1f(x)=8,...Ch. 2.3 - Applying limit laws Assume limx1f(x)=8,...Ch. 2.3 - Applying limit laws Assume limx1f(x)=8,...Ch. 2.3 - Applying limit laws Assume limx1f(x)=8,...Ch. 2.3 - Applying limit laws Assume limx1f(x)=8,...Ch. 2.3 - Applying limit laws Assume limx1f(x)=8,...Ch. 2.3 - Assume limx1f(x)=8 limx1g(x)=3, and limx1h(x)=2....Ch. 2.3 - How are limxap(x) and limxa+p(x) calculated if p...Ch. 2.3 - Suppose g(x)={2x+1ifx05ifx=0. Compute g(0) and...Ch. 2.3 - Suppose f(x)={4ifx3x+2ifx3. Compute limx3f(x) and...Ch. 2.3 - Suppose p and q are polynomials. If...Ch. 2.3 - Suppose limx2f(x)=limx2h(x)=5. Find limx2g(x),...Ch. 2.3 - Limits of linear functions Evaluate the following...Ch. 2.3 - Limits of linear functions Evaluate the following...Ch. 2.3 - Limits of linear functions Evaluate the following...Ch. 2.3 - Limits of linear functions Evaluate the following...Ch. 2.3 - Evaluating limits Evaluate the following limits....Ch. 2.3 - Evaluating limits Evaluate the following limits....Ch. 2.3 - Evaluating limits Evaluate the following limits....Ch. 2.3 - Evaluating limits Evaluate the following limits....Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Evaluate the following limits....Ch. 2.3 - Evaluating limits Evaluate the following limits....Ch. 2.3 - Evaluating limits Evaluate the following limits....Ch. 2.3 - Evaluating limits Evaluate the following limits,...Ch. 2.3 - Evaluating limits Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Other techniques Evaluate the following limits,...Ch. 2.3 - Evaluating limits Evaluate the following limits,...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Evaluate the following limits,...Ch. 2.3 - Evaluating limits Evaluate the following limits,...Ch. 2.3 - Evaluating limits Evaluate the following limits,...Ch. 2.3 - Evaluating limits Evaluate the following limits,...Ch. 2.3 - Evaluating limits Evaluate the following limits,...Ch. 2.3 - Limits involving conjugates Evaluate the following...Ch. 2.3 - Limits involving conjugates Evaluate the following...Ch. 2.3 - Limits involving conjugates Evaluate the following...Ch. 2.3 - Limits involving conjugates Evaluate the following...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Evaluating limits Find the following limits or...Ch. 2.3 - Explain why or why not Determine whether the...Ch. 2.3 - One-sided limits Let g(x)={5x15ifx46x+1ifx4....Ch. 2.3 - One-sided limits Let f(x)={x2ifx1x+1ifx1. Compute...Ch. 2.3 - One-sided limits Let f(x)={0ifx525x2if5x53xifx5....Ch. 2.3 - One-sided limits a. Evaluate limx2+x2. b. Explain...Ch. 2.3 - One-sided limits a. Evaluate limx3x32x. b. Explain...Ch. 2.3 - Prob. 77ECh. 2.3 - Torricellis Law A cylindrical tank is filled with...Ch. 2.3 - Limit of the radius of a cylinder A right circular...Ch. 2.3 - A problem from relativity theory Suppose a...Ch. 2.3 - Applying the Squeeze Theorem a. Show that...Ch. 2.3 - A cosine limit by the Squeeze Theorem It can be...Ch. 2.3 - A sine limit by the Squeeze Theorem It can be...Ch. 2.3 - A logarithm limit by the Squeeze Theorem a. Draw a...Ch. 2.3 - Absolute value limit Show that limx0x=0 by first...Ch. 2.3 - Absolute value limit Show that limxax=a, for any...Ch. 2.3 - Finding a constant Suppose...Ch. 2.3 - Finding a constant Suppose f(x)={3x+bifx2x2ifx2....Ch. 2.3 - Finding a constant Suppose g(x)={x25xifx1ax37ifx1....Ch. 2.3 - Useful factorization formula Calculate the...Ch. 2.3 - Useful factorization formula Calculate the...Ch. 2.3 - Useful factorization formula Calculate the...Ch. 2.3 - Useful factorization formula Calculate the...Ch. 2.3 - Useful factorization formula Calculate the...Ch. 2.3 - Slope of a tangent line a. Sketch a graph of y =...Ch. 2.3 - Prob. 96ECh. 2.3 - Even function limits Suppose f is an even function...Ch. 2.3 - Odd function limits Suppose g is an even function...Ch. 2.3 - Useful factorization formula Calculate the...Ch. 2.3 - Evaluate limx16x42x16.Ch. 2.3 - Creating functions satisfying given limit...Ch. 2.3 - Creating functions satisfying given limit...Ch. 2.3 - Finding constants Find constants b and c in the...Ch. 2.3 - Limits of composite functions 88. If limx1f(x)=4,...Ch. 2.3 - Prob. 105ECh. 2.3 - Two trigonometric inequalities Consider the angle ...Ch. 2.3 - Prob. 107ECh. 2.4 - Sketch the graph of a function and its vertical...Ch. 2.4 - Analyze limx0+x5x and limx0x5x by determining the...Ch. 2.4 - Verify that x(x+4)0 through negative values as...Ch. 2.4 - The line x = 2 is not a vertical asymptote of...Ch. 2.4 - Explain the meaning of limxa+f(x)Ch. 2.4 - Explain the meaning of limxaf(x)=.Ch. 2.4 - What is a vertical asymptote?Ch. 2.4 - Consider the function F(x) = f(x)/g(x) with g(a) =...Ch. 2.4 - Analyzing infinite limits numerically Compute the...Ch. 2.4 - Analyzing infinite limits graphically Use the...Ch. 2.4 - Analyzing infinite limits graphically The graph of...Ch. 2.4 - Analyzing infinite limits graphically The graph of...Ch. 2.4 - Analyzing infinite limits graphically The graph of...Ch. 2.4 - Analyzing infinite limits graphically The graph of...Ch. 2.4 - Analyzing infinite limits graphically Graph the...Ch. 2.4 - Analyzing infinite limits graphically Graph the...Ch. 2.4 - Suppose f(x) 100 and g(x) 0, with g(x) 0, as x ...Ch. 2.4 - Evaluate limx31x3 and limx3+1x3.Ch. 2.4 - Verity that the function f(x)=x24x+3x23x+2 is...Ch. 2.4 - Evaluate limx0x+11cosx.Ch. 2.4 - Sketching graphs Sketch a possible graph of a...Ch. 2.4 - Sketching graphs Sketch a possible graph of a...Ch. 2.4 - Which of the following statements are correct?...Ch. 2.4 - Which of the following statements are correct?...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determine limits analytically Determine the...Ch. 2.4 - Determine limits analytically Determine the...Ch. 2.4 - Determine limits analytically Determine the...Ch. 2.4 - Determine limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determining limits analytically Determine the...Ch. 2.4 - Determine limits analytically Determine the...Ch. 2.4 - Determine limits analytically Determine the...Ch. 2.4 - Trigonometric limits Determine the following...Ch. 2.4 - Trigonometric limits Determine the following...Ch. 2.4 - Trigonometric limits Determine the following...Ch. 2.4 - Trigonometric limits Determine the following...Ch. 2.4 - Determine limits analytically Determine the...Ch. 2.4 - Determine limits analytically Determine the...Ch. 2.4 - Location of vertical asymptotes Analyze the...Ch. 2.4 - Location of vertical asymptotes Analyze the...Ch. 2.4 - Finding vertical asymptotes Find all vertical...Ch. 2.4 - Finding vertical asymptotes Find all vertical...Ch. 2.4 - Finding vertical asymptotes Find all vertical...Ch. 2.4 - Finding vertical asymptotes Find all vertical...Ch. 2.4 - Analyzing infinite limits graphically Graph the...Ch. 2.4 - Analyzing infinite limits graphically Graph the...Ch. 2.4 - Explain why or why not Determine whether the...Ch. 2.4 - Matching Match functions af with graphs AF in the...Ch. 2.4 - Finding a rational function Find a rational...Ch. 2.4 - Finding a function with vertical asymptotes Kind...Ch. 2.4 - Finding a function with infinite limits Give a...Ch. 2.4 - Asymptotes Use analytical methods and/or a...Ch. 2.4 - Asymptotes Use analytical methods and/or a...Ch. 2.4 - Asymptotes Use analytical methods and/or a...Ch. 2.4 - Asymptotes Use analytical methods and/or a...Ch. 2.4 - Asymptotes Use analytical methods and/or a...Ch. 2.4 - Asymptotes Use analytical methods and/or a...Ch. 2.4 - Asymptotes Use analytical methods and/or a...Ch. 2.4 - Prob. 65ECh. 2.4 - Asymptotes Use analytical methods and/or a...Ch. 2.4 - Limits with a parameter Let f(x)=x27x+12xa. a. For...Ch. 2.4 - Steep secant lines a. Given the graph of f in the...Ch. 2.4 - Steep secant lines a. Given the graph of f in the...Ch. 2.5 - Evaluate x/(x+1) for x = 10,100, and 1000. What is...Ch. 2.5 - Describe the behavior of p(x)=3x3 as x and as xCh. 2.5 - Use Theorem 2.7 to find the vertical and...Ch. 2.5 - How do the functions e10x and e10x behave as x and...Ch. 2.5 - Explain the meaning of limxf(x)=10.Ch. 2.5 - Evaluate limxf(x) and limxf(x) using the figure.Ch. 2.5 - Infinite limits at infinity Determine the...Ch. 2.5 - Prob. 4ECh. 2.5 - Infinite limits at infinity Determine the...Ch. 2.5 - Prob. 6ECh. 2.5 - Infinite limits at infinity Determine the...Ch. 2.5 - Infinite limits at infinity Determine the...Ch. 2.5 - Limits at infinity Evaluate the following limits....Ch. 2.5 - Limits at infinity Evaluate the following limits....Ch. 2.5 - Determine limxf(x)g(x) if f(x) 100,000 and g(x) ...Ch. 2.5 - Limits at infinity Evaluate the following limits....Ch. 2.5 - Evaluate limxex,limxex, and limxex.Ch. 2.5 - Describe the end behavior of g(x) = e2x.Ch. 2.5 - Suppose the function g satisfies the inequality...Ch. 2.5 - The graph of g has a vertical asymptote at x = 2...Ch. 2.5 - Limits at infinity Evaluate the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Evaluate the following limits....Ch. 2.5 - Limits at infinity Evaluate the following limits....Ch. 2.5 - Infinite limits at infinity Determine the...Ch. 2.5 - Infinite limits at infinity Determine the...Ch. 2.5 - Infinite limits at infinity Determine the...Ch. 2.5 - Infinite limits at infinity Determine the...Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Limits at infinity Determine the following limits....Ch. 2.5 - Rational functions Determine limxf(x) and limxf(x)...Ch. 2.5 - Rational functions Determine limxf(x) and limxf(x)...Ch. 2.5 - Rational functions Determine limxf(x) and limxf(x)...Ch. 2.5 - Horizontal asymptotes Determine limxf(x) and...Ch. 2.5 - Rational functions Determine limxf(x) and limxf(x)...Ch. 2.5 - Rational functions Determine limxf(x) and limxf(x)...Ch. 2.5 - Rational functions Determine limxf(x) and limxf(x)...Ch. 2.5 - Horizontal asymptotes Determine limxf(x) and...Ch. 2.5 - Horizontal asymptotes Determine limxf(x) and...Ch. 2.5 - Horizontal asymptotes Determine limxf(x) and...Ch. 2.5 - Algebraic functions Determine limxf(x) and...Ch. 2.5 - Prob. 48ECh. 2.5 - Algebraic functions Determine limxf(x) and...Ch. 2.5 - Algebraic functions Determine limxf(x) and...Ch. 2.5 - Slant (oblique) asymptotes Complete the following...Ch. 2.5 - Slant (oblique) asymptotes Complete the following...Ch. 2.5 - Slant (oblique) asymptotes Complete the following...Ch. 2.5 - Slant (oblique) asymptotes Complete the following...Ch. 2.5 - Slant (oblique) asymptotes Complete the following...Ch. 2.5 - Slant (oblique) asymptotes Complete the following...Ch. 2.5 - Transcendental functions Determine the end...Ch. 2.5 - Transcendental functions Determine the end...Ch. 2.5 - Transcendental functions Determine the end...Ch. 2.5 - Transcendental functions Determine the end...Ch. 2.5 - Transcendental functions Determine the end...Ch. 2.5 - Transcendental functions Determine the end...Ch. 2.5 - Explain why or why not Determine whether the...Ch. 2.5 - Steady states If a function f represents a system...Ch. 2.5 - Steady states If a function f represents a system...Ch. 2.5 - Steady states If a function f represents a system...Ch. 2.5 - Steady states If a function f represents a system...Ch. 2.5 - Steady states If a function f represents a system...Ch. 2.5 - Steady states If a function f represents a system...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Horizontal and vertical asymptotes a. Analyze...Ch. 2.5 - Asymptotes Find the vertical and horizontal...Ch. 2.5 - End behavior for transcendental functions...Ch. 2.5 - Consider the graph of y = sec1 x (see Section 1.4)...Ch. 2.5 - End behavior for transcendental functions 64. The...Ch. 2.5 - End behavior for transcendental functions 65. The...Ch. 2.5 - Sketching graphs Sketch a possible graph of a...Ch. 2.5 - Sketching graphs Sketch a possible graph of a...Ch. 2.5 - Prob. 88ECh. 2.5 - Looking ahead to sequences A sequence is an...Ch. 2.5 - Prob. 90ECh. 2.5 - Prob. 91ECh. 2.5 - End behavior of a rational function Suppose...Ch. 2.5 - Horizontal and slant asymptotes a. Is it possible...Ch. 2.5 - End behavior of exponentials Use the following...Ch. 2.5 - Find the horizontal asymptotes of each function...Ch. 2.5 - Find the horizontal asymptotes of each function...Ch. 2.5 - Use analytical methods to identify all the...Ch. 2.6 - For what values of t in (0, 60) does the graph of...Ch. 2.6 - Modify the graphs of the functions t and g in...Ch. 2.6 - On what interval is f(x)=x1/4 continuous? On what...Ch. 2.6 - Show that f(x)=lnx4 is right-continuous at x = 1.Ch. 2.6 - Does the equation f(x)=x3+x+1=0 have a solution on...Ch. 2.6 - Which of the following functions are continuous...Ch. 2.6 - Give the three conditions that must be satisfied...Ch. 2.6 - What does it mean for a function to be continuous...Ch. 2.6 - We informally describe a function f to be...Ch. 2.6 - Determine the points on the interval (0, 5) at...Ch. 2.6 - Determine the points on the interval (0, 5) at...Ch. 2.6 - Determine the points on the interval (0, 5) at...Ch. 2.6 - Determine the points on the interval (0, 5) at...Ch. 2.6 - Complete the following sentences. a. A function is...Ch. 2.6 - Evaluate f(3) if limx3f(x)=5,limx3+f(x)=6, and f...Ch. 2.6 - Determine the intervals of continuity for the...Ch. 2.6 - Determine the intervals of continuity for the...Ch. 2.6 - Determine the intervals of continuity for the...Ch. 2.6 - Determine the intervals of continuity for the...Ch. 2.6 - What is the domain of f(x) = ex/x and where is f...Ch. 2.6 - Parking costs Determine the intervals of...Ch. 2.6 - Continuity at a point Determine whether the...Ch. 2.6 - Continuity at a point Determine whether the...Ch. 2.6 - Continuity at a point Determine whether the...Ch. 2.6 - Continuity at a point Determine whether the...Ch. 2.6 - Continuity at a point Determine whether the...Ch. 2.6 - Continuity at a point Determine whether the...Ch. 2.6 - Continuity at a point Determine whether the...Ch. 2.6 - Continuity at a point Determine whether the...Ch. 2.6 - Continuity on intervals Use Theorem 2.10 to...Ch. 2.6 - Continuity on intervals Use Theorem 2.10 to...Ch. 2.6 - Continuity on intervals Use Theorem 2.10 to...Ch. 2.6 - Continuity on intervals Use Theorem 2.10 to...Ch. 2.6 - Continuity on intervals Use Theorem 2.10 to...Ch. 2.6 - Continuity on intervals Use Theorem 2.10 to...Ch. 2.6 - Limits of compositions Evaluate each limit and...Ch. 2.6 - Limits of compositions Evaluate each limit and...Ch. 2.6 - Limits of composite functions Evaluate each limit...Ch. 2.6 - Limits Evaluate each limit and justify your...Ch. 2.6 - Limits of compositions Evaluate each limit and...Ch. 2.6 - Limits of compositions Evaluate each limit and...Ch. 2.6 - Limits Evaluate each limit and justify your...Ch. 2.6 - Limits of composite functions Evaluate each limit...Ch. 2.6 - Intervals of continuity Let f(x)={2xifx1x2+3xifx1....Ch. 2.6 - Intervals of continuity Let...Ch. 2.6 - Functions with roots Determine the interval(s) on...Ch. 2.6 - Functions with roots Determine the interval(s) on...Ch. 2.6 - Functions with roots Determine the interval(s) on...Ch. 2.6 - Functions with roots Determine the interval(s) on...Ch. 2.6 - Functions with roots Determine the interval(s) on...Ch. 2.6 - Functions with roots Determine the interval(s) on...Ch. 2.6 - Functions with roots Determine the interval(s) on...Ch. 2.6 - Functions with roots Determine the interval(s) on...Ch. 2.6 - Limits with roots Evaluate each limit and justify...Ch. 2.6 - Limits with roots Evaluate each limit and justify...Ch. 2.6 - Miscellaneous limits Evaluate the following limits...Ch. 2.6 - Miscellaneous limits Evaluate the following limits...Ch. 2.6 - Limits with roots Evaluate each limit and justify...Ch. 2.6 - Limits with roots Evaluate each limit and justify...Ch. 2.6 - Miscellaneous limits Evaluate the following limits...Ch. 2.6 - Miscellaneous limits Evaluate the following limits...Ch. 2.6 - Miscellaneous limits Evaluate the following limits...Ch. 2.6 - Miscellaneous limits Evaluate the following limits...Ch. 2.6 - Evaluate each limit. 59.limx0e4x1ex1Ch. 2.6 - Evaluate each limit. 60.limxe2ln2x5lnx+6lnx2Ch. 2.6 - Continuity and limits with transcendental...Ch. 2.6 - Continuity and limits with transcendental...Ch. 2.6 - Continuity and limits with transcendental...Ch. 2.6 - Continuity and limits with transcendental...Ch. 2.6 - Continuity and limits with transcendental...Ch. 2.6 - Continuity and limits with transcendental...Ch. 2.6 - Applying the Intermediate Value Theorem a. Use the...Ch. 2.6 - Applying the Intermediate Value Theorem a. Use the...Ch. 2.6 - Applying the Intermediate Value Theorem a. Use the...Ch. 2.6 - Applying the Intermediate Value Theorem a. Use the...Ch. 2.6 - Applying the Intermediate Value Theorem a. Use the...Ch. 2.6 - Applying the Intermediate Value Theorem a. Use the...Ch. 2.6 - Explain why or why not Determine whether the...Ch. 2.6 - Mortgage payments You are shopping for a 250,000....Ch. 2.6 - Intermediate Value Theorem and interest rates...Ch. 2.6 - Investment problem Assume you invest 250 at the...Ch. 2.6 - Find an interval containing a solution to the...Ch. 2.6 - Continuity of the absolute value function Prove...Ch. 2.6 - Continuity of functions with absolute values Use...Ch. 2.6 - Continuity of functions with absolute values Use...Ch. 2.6 - Continuity of functions with absolute values Use...Ch. 2.6 - Continuity of functions with absolute values Use...Ch. 2.6 - Pitfalls using technology The graph of the...Ch. 2.6 - Pitfalls using technology Graph the function...Ch. 2.6 - Sketching functions a. Sketch the graph of a...Ch. 2.6 - An unknown constant Determine the value of the...Ch. 2.6 - An unknown constant Let...Ch. 2.6 - Asymptotes of a function containing exponentials...Ch. 2.6 - Asymptotes of a function containing exponentials...Ch. 2.6 - Applying the Intermediate Value Theorem Use the...Ch. 2.6 - Applying the Intermediate Value Theorem Use the...Ch. 2.6 - Applying the Intermediate Value Theorem Suppose...Ch. 2.6 - The monk and the mountain A monk set out from a...Ch. 2.6 - Does continuity of |f| imply continuity of f? Let...Ch. 2.6 - Classifying discontinuities The discontinuities in...Ch. 2.6 - Classifying discontinuities The discontinuities in...Ch. 2.6 - Removable discontinuities Show that the following...Ch. 2.6 - Removable discontinuities Show that the following...Ch. 2.6 - Classifying discontinuities Classify the...Ch. 2.6 - Classifying discontinuities Classify the...Ch. 2.6 - Do removable discontinuities exist? See Exercises...Ch. 2.6 - Continuity of composite functions Prove Theorem...Ch. 2.6 - Continuity of compositions a. Find functions f and...Ch. 2.6 - Violation of the Intermediate Value Theorem? Let...Ch. 2.6 - Continuity of sin x and cos x a. Use the identity...Ch. 2.7 - In Example 1, find a positive number δ satisfying...Ch. 2.7 - Prob. 2QCCh. 2.7 - In Example 7, if N is increased by a factor of...Ch. 2.7 - Suppose x lies in the interval (1, 3) with x 2....Ch. 2.7 - Suppose f(x) lies in the interval (2, 6). What is...Ch. 2.7 - Which one of the following intervals is not...Ch. 2.7 - Prob. 4ECh. 2.7 - State the precise definition of limxaf(x)=L.Ch. 2.7 - Interpret |f(x) L| in words.Ch. 2.7 - Suppose |f(x) 5| 0.1 whenever 0 x 5. Find all...Ch. 2.7 - Give the definition of limxaf(x)= and interpret it...Ch. 2.7 - Determining values of from a graph The function f...Ch. 2.7 - Determining values of from a graph The function f...Ch. 2.7 - Determining values of from a graph The function f...Ch. 2.7 - Determining values of from a graph The function f...Ch. 2.7 - Finding for a given using a graph Let f(x) = x3...Ch. 2.7 - Finding for a given using a graph Let g(x) = 2x3...Ch. 2.7 - Finding a symmetric interval The function f in the...Ch. 2.7 - Finding a symmetric interval The function f in the...Ch. 2.7 - Finding a symmetric interval Let f(x)=2x22x1 and...Ch. 2.7 - Finding a symmetric interval Let...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Challenging limit proofs Use the definition of a...Ch. 2.7 - Challenging limit proofs Use the definition of a...Ch. 2.7 - Challenging limit proofs Use the definition of a...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Limit proofs Use the precise definition of a limit...Ch. 2.7 - Challenging limit proofs Use the definition of a...Ch. 2.7 - Proof of Limit Law 2 Suppose limxaf(x)=L and...Ch. 2.7 - Proof of Limit Law 3 Suppose limxaf(x)=L. Prove...Ch. 2.7 - Limit proofs for infinite limits Use the precise...Ch. 2.7 - Limit proofs for infinite limits Use the precise...Ch. 2.7 - Limit proofs for infinite limits Use the precise...Ch. 2.7 - Limit proofs for infinite limits Use the precise...Ch. 2.7 - Explain why or why not Determine whether the...Ch. 2.7 - Prob. 50ECh. 2.7 - Prob. 51ECh. 2.7 - Prob. 52ECh. 2.7 - Precise definitions for left- and right-sided...Ch. 2.7 - Precise definitions for left- and right-sided...Ch. 2.7 - Prob. 55ECh. 2.7 - The relationship between one-sided and two-sided...Ch. 2.7 - Definition of one-sided infinite limits We write...Ch. 2.7 - One-sided infinite limits Use the definitions...Ch. 2.7 - Prob. 59ECh. 2.7 - Definition of an infinite limit We write...Ch. 2.7 - Prob. 61ECh. 2.7 - Suppose limxaf(x)=. Prove that limxa(f(x)+c)= for...Ch. 2.7 - Suppose limxaf(x)= and limxa(x)=. Prove that...Ch. 2.7 - Definition of a limit at infinity The limit at...Ch. 2.7 - Definition of a limit at infinity The limit at...Ch. 2.7 - Definition of infinite limits at infinity We write...Ch. 2.7 - Definition of infinite limits at infinity We write...Ch. 2.7 - Prob. 68ECh. 2.7 - Prob. 69ECh. 2.7 - Proving that limxaf(x)L Use the following...Ch. 2.7 - Prob. 71ECh. 2.7 - Proving that limxaf(x)L Use the following...Ch. 2.7 - Prob. 73ECh. 2.7 - Show that ab|ab| for all constants a and b (Hint...Ch. 2 - Explain why or why not Determine whether the...Ch. 2 - The height above the ground of a stone thrown...Ch. 2 - A baseball is thrown upwards into the air; its...Ch. 2 - Estimating limits graphically Use the graph of f...Ch. 2 - Points of discontinuity Use the graph of f in the...Ch. 2 - Computing a limit graphically and analytically a....Ch. 2 - Computing a limit numerically and analytically a....Ch. 2 - Snowboard rental Suppose the rental cost for a...Ch. 2 - Sketching a graph Sketch the graph of a function f...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Prob. 12RECh. 2 - Calculating limits Determine the following limits....Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Evaluating limits Determine the following limits...Ch. 2 - One-sided limits Analyze limx1+x1x3 and limx1x1x3.Ch. 2 - Finding infinite limits Analyze the following...Ch. 2 - Finding infinite limits Analyze the following...Ch. 2 - Finding infinite limits Analyze the following...Ch. 2 - Finding infinite limits Analyze the following...Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Finding infinite limits Analyze the following...Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Limits at infinity Evaluate the following limits...Ch. 2 - Limits at infinity Evaluate the following limits...Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Prob. 39RECh. 2 - Limits at infinity Evaluate the following limits...Ch. 2 - Limits at infinity Evaluate the following limits...Ch. 2 - Limits at infinity Evaluate the following limits...Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Prob. 45RECh. 2 - Calculating limits Determine the following limits....Ch. 2 - Calculating limits Determine the following limits....Ch. 2 - Prob. 48RECh. 2 - Calculating limits Determine the following limits....Ch. 2 - Prob. 50RECh. 2 - Calculating limits Determine the following limits....Ch. 2 - Applying the Squeeze Theorem Assume the function g...Ch. 2 - Applying the Squeeze Theorem a. Use a graphing...Ch. 2 - Finding vertical asymptotes Let f(x)=x25x+6x22x....Ch. 2 - End behavior Determine the end behavior of the...Ch. 2 - End behavior Determine the end behavior of the...Ch. 2 - End behavior Determine the end behavior of the...Ch. 2 - End behavior Determine the end behavior of the...Ch. 2 - End behavior Evaluate limxf(x) and limxf(x)....Ch. 2 - End behavior Evaluate limxf(x) and limxf(x)...Ch. 2 - Slant asymptotes a. Analyze limxf(x) and limxf(x)...Ch. 2 - Slant asymptotes a. Analyze limxf(x) and limxf(x)...Ch. 2 - Slant asymptotes a. Analyze limxf(x) and limxf(x)...Ch. 2 - Slant asymptotes a. Analyze limxf(x) and limxf(x)...Ch. 2 - Slant asymptotes a. Analyze limxf(x) and limxf(x)...Ch. 2 - Finding asymptotes Find all the asymptotes of the...Ch. 2 - Finding asymptotes Find all the asymptotes of the...Ch. 2 - Finding asymptotes Find all the asymptotes of the...Ch. 2 - Two slant asymptotes Explain why the function...Ch. 2 - Prob. 70RECh. 2 - Continuity at a point Determine whether the...Ch. 2 - Continuity at a point Determine whether the...Ch. 2 - Continuity at a point Use the continuity checklist...Ch. 2 - g(x)={x35x2+6xx2ifx22ifx=2;a=2Ch. 2 - Continuity on intervals Find the intervals on...Ch. 2 - Continuity on intervals Find the intervals on...Ch. 2 - Prob. 77RECh. 2 - Continuity on intervals Find the intervals on...Ch. 2 - Prob. 79RECh. 2 - Prob. 80RECh. 2 - Prob. 81RECh. 2 - Intermediate Value Theorem a. Use the Intermediate...Ch. 2 - x=cosx;(0,2)Ch. 2 - Suppose on a certain day the low temperature was...Ch. 2 - Antibiotic dosing The amount of an antibiotic (in...Ch. 2 - Limit proof Give a formal proof that limx1(5x2)=3.Ch. 2 - Limit proof Give a formal proof that...Ch. 2 - Prob. 88RECh. 2 - Prob. 89RECh. 2 - limx2+4x8=0Ch. 2 - Infinite limit proof Give a formal proof that...Ch. 2 - Limit proofs a. Assume | f(x)| L for all x near a...
Additional Math Textbook Solutions
Find more solutions based on key concepts
To decipher each polygon and confirm whether they are regular or non regular.
Pre-Algebra Student Edition
Identify f as being linear, quadratic, or neither. If f is quadratic, identify the leading coefficient a and ...
College Algebra with Modeling & Visualization (5th Edition)
3. Voluntary Response Sample What is a voluntary response sample, and why is such a sample generally not suitab...
Elementary Statistics
TRY IT YOURSELF 1
Find the mean of the points scored by the 51 winning teams listed on page 39.
Elementary Statistics: Picturing the World (7th Edition)
Comparison tests Use the Comparison Test or Limit Comparison Test to determine whether the following series con...
Calculus: Early Transcendentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- f(x) = = x - 3 x²-9 f(x) = {x + 1 x > 3 4 x < 3 -10 5 10 5 5. 10 5- 07. 10 -10 -5 0 10 5 -101 :: The function has a “step" or "jump" discontinuity at x = 3 where f(3) = 7. :: The function has a value of f (3), a limit as x approaches 3, but is not continuous at x = 3. :: The function has a limit as x approaches 3, but the function is not defined and is not continuous at x = 3. :: The function has a removable discontinuity at x=3 and an infinite discontinuity at x= -3.arrow_forwardCalculus lll May I please have the solutions for the following examples? Thank youarrow_forwardCalculus lll May I please have the solutions for the following exercises that are blank? Thank youarrow_forward
- The graph of 2(x² + y²)² = 25 (x²-y²), shown in the figure, is a lemniscate of Bernoulli. Find the equation of the tangent line at the point (3,1). -10 Write the expression for the slope in terms of x and y. slope = 4x³ + 4xy2-25x 2 3 4x²y + 4y³ + 25y Write the equation for the line tangent to the point (3,1). LV Q +arrow_forwardFind the equation of the tangent line at the given value of x on the curve. 2y3+xy-y= 250x4; x=1 y=arrow_forwardFind the equation of the tangent line at the given point on the curve. 3y² -√x=44, (16,4) y=] ...arrow_forward
- For a certain product, cost C and revenue R are given as follows, where x is the number of units sold in hundreds. Cost: C² = x² +92√x+56 Revenue: 898(x-6)² + 24R² = 16,224 dC a. Find the marginal cost at x = 6. dx The marginal cost is estimated to be $ ☐ . (Do not round until the final answer. Then round to the nearest hundredth as needed.)arrow_forwardThe graph of 3 (x² + y²)² = 100 (x² - y²), shown in the figure, is a lemniscate of Bernoulli. Find the equation of the tangent line at the point (4,2). АУ -10 10 Write the expression for the slope in terms of x and y. slope =arrow_forwardUse a geometric series to represent each of the given functions as a power series about x=0, and find their intervals of convergence. a. f(x)=5/(3-x) b. g(x)= 3/(x-2)arrow_forward
- An object of mass 4 kg is given an initial downward velocity of 60 m/sec and then allowed to fall under the influence of gravity. Assume that the force in newtons due to air resistance is - 8v, where v is the velocity of the object in m/sec. Determine the equation of motion of the object. If the object is initially 500 m above the ground, determine when the object will strike the ground. Assume that the acceleration due to gravity is 9.81 m/sec² and let x(t) represent the distance the object has fallen in t seconds. Determine the equation of motion of the object. x(t) = (Use integers or decimals for any numbers in the expression. Round to two decimal places as needed.)arrow_forwardEarly Monday morning, the temperature in the lecture hall has fallen to 40°F, the same as the temperature outside. At 7:00 A.M., the janitor turns on the furnace with the thermostat set at 72°F. The time constant for the building is = 3 hr and that for the building along with its heating system is 1 K A.M.? When will the temperature inside the hall reach 71°F? 1 = 1 hr. Assuming that the outside temperature remains constant, what will be the temperature inside the lecture hall at 8:30 2 At 8:30 A.M., the temperature inside the lecture hall will be about (Round to the nearest tenth as needed.) 1°F.arrow_forwardFind the maximum volume of a rectangular box whose surface area is 1500 cm² and whose total edge length is 200 cm. cm³arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Intermediate AlgebraAlgebraISBN:9781285195728Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Elementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice UniversityAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage

Intermediate Algebra
Algebra
ISBN:9781285195728
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning


Elementary Algebra
Algebra
ISBN:9780998625713
Author:Lynn Marecek, MaryAnne Anthony-Smith
Publisher:OpenStax - Rice University
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Sequences and Series Introduction; Author: Mario's Math Tutoring;https://www.youtube.com/watch?v=m5Yn4BdpOV0;License: Standard YouTube License, CC-BY
Introduction to sequences; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=VG9ft4_dK24;License: Standard YouTube License, CC-BY