Elementary Linear Algebra: Applications Version
12th Edition
ISBN: 9781119282365
Author: Howard Anton, Chris Rorres, Anton Kaul
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2.3, Problem 36E
Prove that a square matrix A is invertible if and only if ATA is invertible.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Find the Laplace Transform of the function to express it in frequency domain form.
Please draw a graph that represents the system of equations f(x) = x2 + 2x + 2 and g(x) = –x2 + 2x + 4?
Given the following system of equations and its graph below, what can be determined about the slopes and y-intercepts of the system of equations?
7
y
6
5
4
3
2
-6-5-4-3-2-1
1+
-2
1 2 3 4 5 6
x + 2y = 8
2x + 4y = 12
The slopes are different, and the y-intercepts are different.
The slopes are different, and the y-intercepts are the same.
The slopes are the same, and the y-intercepts are different.
O The slopes are the same, and the y-intercepts are the same.
Chapter 2 Solutions
Elementary Linear Algebra: Applications Version
Ch. 2.1 - In Exercises 12, find all the minors and cofactors...Ch. 2.1 - In Exercises 12, find all the minors and cofactors...Ch. 2.1 - Let A=[41160033410144132] Find a. M13 and C13 b....Ch. 2.1 - Let A=[2311320332103214] Find a. M32 and C32 b....Ch. 2.1 - In Exercises 58, evaluate the determinant of the...Ch. 2.1 - In Exercises 58, evaluate the determinant of the...Ch. 2.1 - In Exercises 58, evaluate the determinant of the...Ch. 2.1 - In Exercises 58, evaluate the determinant of the...Ch. 2.1 - In Exercises 914, use the arrow technique of...Ch. 2.1 - In Exercises 914, use the arrow technique of...
Ch. 2.1 - In Exercises 914, use the arrow technique of...Ch. 2.1 - In Exercises 914, use the arrow technique of...Ch. 2.1 - In Exercises 914, use the arrow technique of...Ch. 2.1 - In Exercises 914, use the arrow technique of...Ch. 2.1 - In Exercises 1518, find all values of for which...Ch. 2.1 - In Exercises 1518, find all values of for which...Ch. 2.1 - In Exercises 1518, find all values of for which...Ch. 2.1 - In Exercises 1518, find all values of for which...Ch. 2.1 - Evaluate the determinant in Exercise 13 by a...Ch. 2.1 - Evaluate the determinant in Exercise 12 by a...Ch. 2.1 - In Exercises 2126, evaluate det(A) by a cofactor...Ch. 2.1 - In Exercises 2126, evaluate det(A) by a cofactor...Ch. 2.1 - In Exercises 2126, evaluate det(A) by a cofactor...Ch. 2.1 - In Exercises 2126, evaluate det(A) by a cofactor...Ch. 2.1 - In Exercises 2126, evaluate det(A) by a cofactor...Ch. 2.1 - In Exercises 2126, evaluate det(A) by a cofactor...Ch. 2.1 - In Exercises 2732, evaluate the determinant of the...Ch. 2.1 - In Exercises 2732, evaluate the determinant of the...Ch. 2.1 - In Exercises 2732, evaluate the determinant of the...Ch. 2.1 - In Exercises 2732, evaluate the determinant of the...Ch. 2.1 - In Exercises 2732, evaluate the determinant of the...Ch. 2.1 - In Exercises 2732, evaluate the determinant of the...Ch. 2.1 - In each part, show that the value of the...Ch. 2.1 - Show that the matrices A=[ab0c]andB=[de0f] commute...Ch. 2.1 - By inspection, what is the relationship between...Ch. 2.1 - Show that det(A)=12|tr(A)1tr(A2)tr(A)| for every 2...Ch. 2.1 - What can you say about an nth-order determinant...Ch. 2.1 - What is the maximum number of zeros that a 3 3...Ch. 2.1 - Explain why the determinant of a matrix with...Ch. 2.1 - prove that (x1, y1), (x2, y2), and (x3, y3) are...Ch. 2.1 - Prove that the equation of the line through the...Ch. 2.1 - Prove that if A is upper triangular and Bij is the...Ch. 2.1 - A matrix in which the entries in each row (or in...Ch. 2.1 - In parts (a)(j) determine whether the statement is...Ch. 2.1 - In parts (a)( j) determine whether the statement...Ch. 2.1 - In parts (a)(j) determine whether the statement is...Ch. 2.1 - In parts (a)(j) determine whether the statement is...Ch. 2.1 - In parts (a)(j) determine whether the statement is...Ch. 2.1 - In parts (a)(j) determine whether the statement is...Ch. 2.1 - In parts (a)( j) determine whether the statement...Ch. 2.1 - In parts (a)(j) determine whether the statement is...Ch. 2.1 - In parts (a)(j) determine whether the statement is...Ch. 2.1 - In parts (a)(j) determine whether the statement is...Ch. 2.2 - In Exercises 14, verify that det(A) = det(AT)...Ch. 2.2 - In Exercises 14, verify that det(A) = det(AT)....Ch. 2.2 - In Exercises 14, verify that det(A) = det(AT)...Ch. 2.2 - In Exercises 14, verify that det(A) = det(AT)....Ch. 2.2 - In Exercises 58, find the determinant of the given...Ch. 2.2 - In Exercises 58, find the determinant of the given...Ch. 2.2 - In Exercises 58, find the determinant of the given...Ch. 2.2 - In Exercises 58, find the determinant of the given...Ch. 2.2 - In Exercises 914, evaluate the determinant of the...Ch. 2.2 - In Exercises 914, evaluate the determinant of the...Ch. 2.2 - In Exercises 914, evaluate the determinant of the...Ch. 2.2 - In Exercises 914, evaluate the determinant of the...Ch. 2.2 - In Exercises 914, evaluate the determinant of the...Ch. 2.2 - In Exercises 914, evaluate the determinant of the...Ch. 2.2 - In Exercises 1522, evaluate the determinant, given...Ch. 2.2 - In Exercises 1522, evaluate the determinant, given...Ch. 2.2 - In Exercises 1522, evaluate the determinant, given...Ch. 2.2 - In Exercises 1522, evaluate the determinant, given...Ch. 2.2 - In Exercises 1522, evaluate the determinant, given...Ch. 2.2 - In Exercises 1522, evaluate the determinant, given...Ch. 2.2 - In Exercises 1522, evaluate the determinant, given...Ch. 2.2 - In Exercises 1522, evaluate the determinant, given...Ch. 2.2 - Use row reduction to show that...Ch. 2.2 - Verify the formulas in parts (a) and (b) and then...Ch. 2.2 - In Exercises 2528, confirm the identities without...Ch. 2.2 - In Exercises 2528, confirm the identities without...Ch. 2.2 - In Exercises 2528, confirm the identities without...Ch. 2.2 - In Exercises 2528, confirm the identities without...Ch. 2.2 - In Exercises 2930, show that det (A) = 0 without...Ch. 2.2 - In Exercises 2930, show that det (A) = 0 without...Ch. 2.2 - It can be proved that if a square matrix M is...Ch. 2.2 - It can be proved that if a square matrix M is...Ch. 2.2 - Let A be an n n matrix, and let B be the matrix...Ch. 2.2 - Find the determinant of the following matrix....Ch. 2.2 - In parts (a)(f) determine whether the statement is...Ch. 2.2 - In parts (a)(f) determine whether the statement is...Ch. 2.2 - In parts (a)(f) determine whether the statement is...Ch. 2.2 - In parts (a)(f) determine whether the statement is...Ch. 2.2 - In parts (a)(f) determine whether the statement is...Ch. 2.2 - In parts (a)(f) determine whether the statement is...Ch. 2.3 - In Exercises 14, verify that det(kA) = kn det(A)....Ch. 2.3 - In Exercises 14, verify that det(kA) = kn det(A)....Ch. 2.3 - In Exercises 14, verify that det (kA) = kn det...Ch. 2.3 - In Exercises 14, verify that det (KA) = Kn det(A)....Ch. 2.3 - In Exercises 56, verify that det (AB) = det (BA)...Ch. 2.3 - In Exercises 56, verify that det(AB) = det(BA) and...Ch. 2.3 - In Exercises 714, use determinants to decide...Ch. 2.3 - In Exercises 714, use determinants to decide...Ch. 2.3 - In Exercises 714, use determinants to decide...Ch. 2.3 - In Exercises 714, use determinants to decide...Ch. 2.3 - In Exercises 714, use determinants to decide...Ch. 2.3 - In Exercises 714, use determinants to decide...Ch. 2.3 - In Exercises 714, use determinants to decide...Ch. 2.3 - In Exercises 714, use determinants to decide...Ch. 2.3 - In Exercises 1518, find the values of k for which...Ch. 2.3 - In Exercises 1518, find the values of k for which...Ch. 2.3 - In Exercises 1518, find the values of k for which...Ch. 2.3 - In Exercises 1518, find the values of k for which...Ch. 2.3 - In Exercises 1923, decide whether the matrix is...Ch. 2.3 - In Exercises 1923, decide whether the matrix is...Ch. 2.3 - In Exercises 1923, decide whether the matrix is...Ch. 2.3 - In Exercises 1923, decide whether the matrix is...Ch. 2.3 - In Exercises 1923, decide whether the matrix is...Ch. 2.3 - In Exercises 2429, solve by Cramers rule, where it...Ch. 2.3 - In Exercises 2429, solve by Cramers rule, where it...Ch. 2.3 - In Exercises 2429, solve by Cramers rule, where it...Ch. 2.3 - In Exercises 2429, solve by Cramers rule, where it...Ch. 2.3 - In Exercises 2429, solve by Cramers rule, where it...Ch. 2.3 - In Exercises 2429, solve by Cramers rule, where it...Ch. 2.3 - Show that the matrix A=[cossin0sincos0001] is...Ch. 2.3 - Use Cramers rule to solve for the unknown y...Ch. 2.3 - Let Ax = b be the system in Exercise 31 a. Solve...Ch. 2.3 - Let A=[abcdefghi] Assuming that det(A) = 7, find...Ch. 2.3 - In each part, find the determinant given that A is...Ch. 2.3 - In each part, find the determinant given that A is...Ch. 2.3 - Prove that a square matrix A is invertible if and...Ch. 2.3 - Prove that if A is a square matrix, then det(AT) =...Ch. 2.3 - Let Ax = b be a system of n linear equations in n...Ch. 2.3 - Prove that if det(A) = 1 and all the entries in A...Ch. 2.3 - In parts (a)(l) determine whether the statement is...Ch. 2.3 - In parts (a)(l) determine whether the statement is...Ch. 2.3 - In parts (a)(l) determine whether the statement is...Ch. 2.3 - In parts (a)(l) determine whether the statement is...Ch. 2.3 - In parts (a)(l) determine whether the statement is...Ch. 2.3 - In parts (a)(l) determine whether the statement is...Ch. 2.3 - In parts (a)(l) determine whether the statement is...Ch. 2.3 - In parts (a)(l) determine whether the statement is...Ch. 2.3 - In parts (a)(l) determine whether the statement is...Ch. 2.3 - In parts (a)(l) determine whether the statement is...Ch. 2.3 - In parts (a)(l) determine whether the statement is...Ch. 2.3 - Prob. 12TFCh. 2 - In Exercises 18, evaluate the determinant of the...Ch. 2 - In Exercises 18, evaluate the determinant of the...Ch. 2 - In Exercises 18, evaluate the determinant of the...Ch. 2 - In Exercises 18, evaluate the determinant of the...Ch. 2 - In Exercises 18, evaluate the determinant of the...Ch. 2 - In Exercises 18, evaluate the determinant of the...Ch. 2 - In Exercises 18, evaluate the determinant of the...Ch. 2 - In Exercises 18, evaluate the determinant of the...Ch. 2 - Evaluate the determinants in Exercises 36 by using...Ch. 2 - a. Construct a 4 4 matrix whose determinant is...Ch. 2 - Use the determinant to decide whether the matrices...Ch. 2 - Use the determinant to decide whether the matrices...Ch. 2 - In Exercises 1315, find the given determinant by...Ch. 2 - In Exercises 1315, find the given determinant by...Ch. 2 - In Exercises 1315, find the given determinant by...Ch. 2 - Solve for x. |x131x|=|1032x613x5|Ch. 2 - In Exercises 1724, use the adjoint method (Theorem...Ch. 2 - In Exercises 1724, use the adjoint method (Theorem...Ch. 2 - In Exercises 1724, use the adjoint method (Theorem...Ch. 2 - In Exercises 1724, use the adjoint method (Theorem...Ch. 2 - In Exercises 1724, use the adjoint method (Theorem...Ch. 2 - In Exercises 1724, use the adjoint method (Theorem...Ch. 2 - In Exercises 1724, use the adjoint method (Theorem...Ch. 2 - In Exercises 1724, use the adjoint method (Theorem...Ch. 2 - Use Cramers rule to solve for x and y in terms of...Ch. 2 - Use Cramers rule to solve for x and y in terms of...Ch. 2 - By examining the determinant of the coefficient...Ch. 2 - Let A be a 3 3 matrix, each of whose entries is 1...Ch. 2 - a. For the triangle in the accompanying figure,...Ch. 2 - Use determinants to show that for all real values...Ch. 2 - Prove: If A is invertible, then adj(A) is...Ch. 2 - Prove: If A is an n n matrix, then...Ch. 2 - Prove: If the entries in each row of an n n...Ch. 2 - a. In the accompanying figure, the area of the...Ch. 2 - Use the fact that 21375, 38798, 34162, 40223,...Ch. 2 - Without directly evaluating the determinant, show...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Repeated linear factors Evaluate the following integrals. 29. 11x(x+3)2dx
Calculus: Early Transcendentals (2nd Edition)
In Exercises 21-24, refer to the sample data in Table 4-1, which is included with the Chapter Problem. Assume t...
Elementary Statistics (13th Edition)
Find the derivatives of the functions in Exercises 17 40.
University Calculus: Early Transcendentals (4th Edition)
For a population containing N=902 individual, what code number would you assign for a. the first person on the ...
Basic Business Statistics, Student Value Edition
For each of the following, determine the constant c so that f(x) satisfies the conditions of being a pmf for a ...
Probability And Statistical Inference (10th Edition)
From a group of n people, suppose that we want to choose a committee of k,kn, one of whom is to be designated a...
A First Course in Probability (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Choose the function to match the graph. -2- 0 -7 -8 -9 --10- |--11- -12- f(x) = log x + 5 f(x) = log x - 5 f(x) = log (x+5) f(x) = log (x-5) 9 10 11 12 13 14arrow_forwardWhich of the following represents the graph of f(x)=3x-2? 7 6 5 4 ++ + + -7-6-5-4-3-2-1 1 2 3 4 5 6 7 -2 3 -5 6 -7 96 7 5 4 O++ -7-6-5-4-3-2-1 -2 -3 -4 -5 -7 765 432 -7-6-5-4-3-2-1 -2 ++ -3 -4 -5 -6 2 3 4 5 6 7 7 6 2 345 67 -7-6-5-4-3-2-1 2 3 4 5 67 4 -5arrow_forward13) Let U = {j, k, l, m, n, o, p} be the universal set. Let V = {m, o,p), W = {l,o, k}, and X = {j,k). List the elements of the following sets and the cardinal number of each set. a) W° and n(W) b) (VUW) and n((V U W)') c) VUWUX and n(V U W UX) d) vnWnX and n(V WnX)arrow_forward
- 9) Use the Venn Diagram given below to determine the number elements in each of the following sets. a) n(A). b) n(A° UBC). U B oh a k gy ท W z r e t ་ Carrow_forward10) Find n(K) given that n(T) = 7,n(KT) = 5,n(KUT) = 13.arrow_forward7) Use the Venn Diagram below to determine the sets A, B, and U. A = B = U = Blue Orange white Yellow Black Pink Purple green Grey brown Uarrow_forward
- 1) Use the roster method to list the elements of the set consisting of: a) All positive multiples of 3 that are less than 20. b) Nothing (An empty set).arrow_forward2) Let M = {all postive integers), N = {0,1,2,3... 100), 0= {100,200,300,400,500). Determine if the following statements are true or false and explain your reasoning. a) NCM b) 0 C M c) O and N have at least one element in common d) O≤ N e) o≤o 1arrow_forward4) Which of the following universal sets has W = {12,79, 44, 18) as a subset? Choose one. a) T = {12,9,76,333, 44, 99, 1000, 2} b) V = {44,76, 12, 99, 18,900,79,2} c) Y = {76,90, 800, 44, 99, 55, 22} d) x = {79,66,71, 4, 18, 22,99,2}arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,

Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Matrix Factorization - Numberphile; Author: Numberphile;https://www.youtube.com/watch?v=wTUSz-HSaBg;License: Standard YouTube License, CC-BY