CHEMISTRY >CUSTOM<
CHEMISTRY >CUSTOM<
8th Edition
ISBN: 9781309097182
Author: SILBERBERG
Publisher: MCG/CREATE
bartleby

Concept explainers

Question
Book Icon
Chapter 23, Problem 23.90P

(a)

Interpretation Introduction

Interpretation:

The orbital splitting diagram given [MoCl6]3 complex has to be drawn using the spectrochemical series.

Concept introduction:

Spectrochemical series: The list of ligands arranged in an ascending order of (Δ) (the splitting of d-orbitals in presence of various ligands).

I-<Br-<SCN-<Cl-<S2-<F-<OH-<O2-<H2O<NCS-<edta4-<NH3<  en<NO2-<CN-<COweak-fieldincreasing(Δ)strong-fieldligandsligands

Crystal field splitting: The energy gap between the splitting of d-orbitals of the metal ion in presence of ligands is known as the crystal field splitting (Δ). The magnitude of (Δ) is depends on the nature of metal ions and the ligands.

In an octahedral complex, the six ligands approach the central metal atom lying at the symmetry along the Cartesian axes.  The orbitals lying along axes dz2anddz2y2 get repelled more strongly by the negative ligands and are raised in energy relative to the average energy in between the axes dxy,dxzanddzy

Splitting of five d-orbitals in an octahedral crystals field is as follows:

CHEMISTRY >CUSTOM<                     , Chapter 23, Problem 23.90P , additional homework tip  1

Figure 1

CHEMISTRY >CUSTOM<                     , Chapter 23, Problem 23.90P , additional homework tip  2

(a)

Expert Solution
Check Mark

Explanation of Solution

Electron configuration of Mo: [Kr]5s14d5

Charge on Mo: Each chloride ligand has a –1 charge for a total charge of –6, so Mo has a +3 charge to make the overall complex charge equal to –3.

Electron configuration of Mo3+: [Kr]4d3

Six ligands indicate an octahedral arrangement. Using Hund’s rule, fill the lower energy t2g orbitals first, filling empty orbitals before pairing electrons within an orbital.

(b)

Interpretation Introduction

Interpretation:

The orbital splitting diagram given [Ni(H2O)6]2+ complex has to be drawn using the spectrochemical series.

Concept introduction:

Spectrochemical series: The list of ligands arranged in an ascending order of (Δ) (the splitting of d-orbitals in presence of various ligands).

I-<Br-<SCN-<Cl-<S2-<F-<OH-<O2-<H2O<NCS-<edta4-<NH3<  en<NO2-<CN-<COweak-fieldincreasing(Δ)strong-fieldligandsligands

Crystal field splitting: The energy gap between the splitting of d-orbitals of the metal ion in presence of ligands is known as the crystal field splitting (Δ). The magnitude of (Δ) is depends on the nature of metal ions and the ligands.

In an octahedral complex, the six ligands approach the central metal atom lying at the symmetry along the Cartesian axes.  The orbitals lying along axes dz2anddz2y2 get repelled more strongly by the negative ligands and are raised in energy relative to the average energy in between the axes dxy,dxzanddzy

Splitting of five d-orbitals in an octahedral crystals field is as follows:

CHEMISTRY >CUSTOM<                     , Chapter 23, Problem 23.90P , additional homework tip  3

Figure 1

CHEMISTRY >CUSTOM<                     , Chapter 23, Problem 23.90P , additional homework tip  4

(b)

Expert Solution
Check Mark

Explanation of Solution

Electron configuration of Ni: [Ar]4s23d8

Charge on Ni: The aqua ligands are neutral, so the charge on Ni is +2.

Electron configuration of Ni2+: [Ar]3d8

Six ligands indicate an octahedral arrangement.  Use Hund’s rule to fill the orbitals.

H2O is a weak-field ligand, so the splitting energy, Δ, is not large enough to overcome the resistance to electron pairing.  One electron occupies each of the five d orbitals before pairing in the t2g orbitals, and the complex is called high-spin.

(c)

Interpretation Introduction

Interpretation:

The orbital splitting diagram given [Ni(CN)4]2 complex has to be drawn using the spectrochemical series.

Concept introduction:

Spectrochemical series: The list of ligands arranged in an ascending order of (Δ) (the splitting of d-orbitals in presence of various ligands).

I-<Br-<SCN-<Cl-<S2-<F-<OH-<O2-<H2O<NCS-<edta4-<NH3<  en<NO2-<CN-<COweak-fieldincreasing(Δ)strong-fieldligandsligands

Crystal field splitting: The energy gap between the splitting of d-orbitals of the metal ion in presence of ligands is known as the crystal field splitting (Δ). The magnitude of (Δ) is depends on the nature of metal ions and the ligands.

Splitting of five d-orbitals in a square planer crystals field is as follows:

CHEMISTRY >CUSTOM<                     , Chapter 23, Problem 23.90P , additional homework tip  5

Figure 1

CHEMISTRY >CUSTOM<                     , Chapter 23, Problem 23.90P , additional homework tip  6

(c)

Expert Solution
Check Mark

Explanation of Solution

Electron configuration of Ni: [Ar]4s23d8

Charge on Ni: Each cyanide ligand has a –1 charge for a total charge of –4, so Ni has a +2 charge to make the overall complex charge equal to –2.

Electron configuration of Ni2+: [Ar]3d8

The coordination number is 4 and the complex is square planar.

The complex is low-spin because CN is a strong-field ligand.  Electrons pair in one set of orbitals before occupying orbitals of higher energy.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 23 Solutions

CHEMISTRY >CUSTOM<

Ch. 23.4 - Prob. 23.6AFPCh. 23.4 - Prob. 23.6BFPCh. 23.4 - Prob. 23.7AFPCh. 23.4 - Prob. 23.7BFPCh. 23.4 - Prob. B23.1PCh. 23.4 - Prob. B23.2PCh. 23 - Prob. 23.1PCh. 23 - Write the general electron configuration of a...Ch. 23 - Prob. 23.3PCh. 23 - Prob. 23.4PCh. 23 - Prob. 23.5PCh. 23 - Prob. 23.6PCh. 23 - (a) What is the range in electronegativity across...Ch. 23 - (a) Explain the major difference between the...Ch. 23 - (a) What behavior distinguishes paramagnetic and...Ch. 23 - Prob. 23.10PCh. 23 - Using the periodic table to locate each element,...Ch. 23 - Using the periodic table to locate each element,...Ch. 23 - Using the periodic table to locate each element,...Ch. 23 - Prob. 23.14PCh. 23 - Prob. 23.15PCh. 23 - What is the highest oxidation state for (a) Ta;...Ch. 23 - What is the highest oxidation state for (a) Nb;...Ch. 23 - Prob. 23.18PCh. 23 - Prob. 23.19PCh. 23 - Prob. 23.20PCh. 23 - Prob. 23.21PCh. 23 - Prob. 23.22PCh. 23 - Prob. 23.23PCh. 23 - Prob. 23.24PCh. 23 - Prob. 23.25PCh. 23 - Prob. 23.26PCh. 23 - What atomic property of the lanthanides leads to...Ch. 23 - Prob. 23.28PCh. 23 - Prob. 23.29PCh. 23 - Give the electron configuration of (a) La; (b)...Ch. 23 - Prob. 23.31PCh. 23 - Only a few lanthanides show an oxidation state...Ch. 23 - Prob. 23.33PCh. 23 - Prob. 23.34PCh. 23 - Describe the makeup of a complex ion, including...Ch. 23 - Prob. 23.36PCh. 23 - Prob. 23.37PCh. 23 - Prob. 23.38PCh. 23 - Prob. 23.39PCh. 23 - Prob. 23.40PCh. 23 - Prob. 23.41PCh. 23 - Prob. 23.42PCh. 23 - Prob. 23.43PCh. 23 - Prob. 23.44PCh. 23 - Prob. 23.45PCh. 23 - Prob. 23.46PCh. 23 - What are the charge and coordination number of the...Ch. 23 - What are the charge and coordination number of the...Ch. 23 - Prob. 23.49PCh. 23 - Give systematic names for the following...Ch. 23 - What are the charge and coordination number of the...Ch. 23 - What are the charge and coordination number of the...Ch. 23 - Prob. 23.53PCh. 23 - Prob. 23.54PCh. 23 - Prob. 23.55PCh. 23 - Prob. 23.56PCh. 23 - Prob. 23.57PCh. 23 - Prob. 23.58PCh. 23 - Prob. 23.59PCh. 23 - Prob. 23.60PCh. 23 - Prob. 23.61PCh. 23 - Prob. 23.62PCh. 23 - For any of the following that can exist as...Ch. 23 - Prob. 23.64PCh. 23 - Prob. 23.65PCh. 23 - Prob. 23.66PCh. 23 - Chromium(III), like cobalt(III), has a...Ch. 23 - When MCl4(NH3)2 is dissolved in water and treated...Ch. 23 - Prob. 23.69PCh. 23 - What is a coordinate covalent bond? Is such a...Ch. 23 - Prob. 23.71PCh. 23 - Prob. 23.72PCh. 23 - Prob. 23.73PCh. 23 - In terms of the theory of color absorption,...Ch. 23 - Prob. 23.75PCh. 23 - Prob. 23.76PCh. 23 - Prob. 23.77PCh. 23 - How do the relative magnitudes of Epairing and Δ...Ch. 23 - Prob. 23.79PCh. 23 - Give the number of d electrons (n of dn) for the...Ch. 23 - Give the number of d electrons (n of dn) for the...Ch. 23 - Prob. 23.82PCh. 23 - How many d electrons (n of dn) are in the central...Ch. 23 - Prob. 23.84PCh. 23 - Prob. 23.85PCh. 23 - Prob. 23.86PCh. 23 - Prob. 23.87PCh. 23 - Prob. 23.88PCh. 23 - Prob. 23.89PCh. 23 - Prob. 23.90PCh. 23 - Prob. 23.91PCh. 23 - Prob. 23.92PCh. 23 - Prob. 23.93PCh. 23 - Prob. 23.94PCh. 23 - Prob. 23.95PCh. 23 - Prob. 23.96PCh. 23 - Prob. 23.97PCh. 23 - Prob. 23.98PCh. 23 - When neptunium (Np) and plutonium (Pu) were...Ch. 23 - Prob. 23.100PCh. 23 - Prob. 23.101PCh. 23 - For the compound [Co(en)2Cl2]Cl, give: The...Ch. 23 - Prob. 23.103PCh. 23 - Prob. 23.104PCh. 23 - Prob. 23.105PCh. 23 - Prob. 23.106PCh. 23 - Prob. 23.107PCh. 23 - Prob. 23.108PCh. 23 - Prob. 23.109PCh. 23 - Prob. 23.110PCh. 23 - Prob. 23.111PCh. 23 - The actinides Pa, U, and Np form a series of...Ch. 23 - Prob. 23.113PCh. 23 - Prob. 23.114PCh. 23 - Prob. 23.115PCh. 23 - Prob. 23.116PCh. 23 - Prob. 23.117PCh. 23 - Prob. 23.118PCh. 23 - Prob. 23.119PCh. 23 - Prob. 23.120PCh. 23 - Prob. 23.121PCh. 23 - Prob. 23.122P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY