AVC LOOSELEAF CHEMISTRY W/CONNECT 2 SEM
AVC LOOSELEAF CHEMISTRY W/CONNECT 2 SEM
13th Edition
ISBN: 9781260987164
Author: Chang
Publisher: MCG CUSTOM
bartleby

Videos

Textbook Question
Book Icon
Chapter 23, Problem 23.72QP

Commercial silver-plating operations frequently use a solution containing the complex Ag ( CN ) 2 ion. Because the formation constant (Kf) is quite large, this procedure ensures that the free Ag+ concentration in solution is low for uniform electrodeposition. In one process, a chemist added 9.0 L of 5.0 M NaCN to 90.0 L of 0.20 M AgNO3. Calculate the concentration of free Ag+ ions at equilibrium. See Table 16.4. for Kf value.

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

The concentration of free Ag+ ions at equilibrium to be calculated in a given chemical equilibrium.

Concept Introduction:

Reaction of coordination compounds: Complex ion undergoes ligand exchange (or substitution) reactions in solution. The rate of reaction is depends on the nature of metal ions and the ligands.

Formation constant: Kf=[product] eq[reactant] eq the formation constant of an equilibrium reaction is the ratio of equilibrium concentration of product by the equilibrium concentration of reactant.

No. of moles: numberofmoles=molarity×volume

To Identify: The concentration of free Ag+ ions at equilibrium to be calculated in a given chemical equilibrium.

Answer to Problem 23.72QP

The calculated concentration of free Ag+ ions at equilibrium is 2.2 × 10-20 M.

Explanation of Solution

Find the concentration of free Ag+ ions at equilibrium.

Ag+(aq)+2CN-(aq)[Ag(CN)2]-(aq)

The formation constant for the above reaction: Kf=[Fe(H2O)6NCS]2+ eq[Fe(H2O)6]3+eq [SCN-eq

  • Concentration of cyanide ions:

Concentration [CN-] = moles of cyanide ionsvolume of solution.Molarity × volume (of cyanide ions)volume of solution(5.0 mol/L)(9.0 L)(90 + 9.0) L=  0.455 M.

The concentration of cyanide ions is calculated as shown above. The concentration of cyanide ions is used at the equilibrium formation constant.

  • Concentration of silver ions:

Concentration [Ag+] = moles of silver ionsvolume of solution.Molarity × volume (of silver ions)volume of solution(0.20 mol/L)(90 L)(90 + 9.0) L=  0.182 M.

The concentration of silver ions is calculated as shown above. The concentration of silver ion is used at the equilibrium formation constant.

  • Determine the concentrations after complete reaction.

 Ag+(aq)    +2CN-(aq)[Ag(CN)2]-(aq)initial(M):0.1820.4550.00change(M):-0.182-(2)(0.182)+0.182_Equilibrium(M):00.09100.182Kf=   [Ag(CN)2]- eq[Ag+]eq [CN-]2eq1.0×1021= 0.182[Ag+](0.0910 M)2[Ag+]=    2.2×10-20M

In order to calculate the concentration of silver ions, all the known values are substituted in the equilibrium formation constant. Thus, the obtained concentration of silver ions is 2.2×10-20M.

Conclusion

The concentration of free Ag+ ions at equilibrium is calculated in a given chemical equilibrium.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
" is The structure of the bicarbonate (hydrogen carbonate) ion, HCO3-, HCO3 best described as a hybrid of several contributing resonance forms, two of which are shown here. HO :0: :Ö: HO + Bicarbonate is crucial for the control of body pH (for example, blood pH: 7.4). A more self-indulgent use is in baking soda, where it serves as a source of CO2 CO₂ 2 gas, which gives bread and pastry their fluffy constituency. (i) Draw at least one additional resonance form. = (ii) Using curved "electron-pushing" arrows, show how these Lewis structures may be interconverted by movement of electron pairs. (iii) Determine which form or forms will be the major contributor(s) to the real structure of bicarbonate, explaining your answer on the basis of the criteria in Section 1-5.
Which of these is the best use of a volumetric flask? measuring how much liquid it contains delivering a precise amount of liquid to another container holding solutions making solutions of precise concentration
You're competing on a Great British television game show, and you need to bake a cake. The quantity for each ingredient is given in grams, but you haven't been given a kitchen scale. Which of these properties would correlate with the mass of a baking ingredient like eggs or milk? Check all that apply. depth of color viscosity volume density

Chapter 23 Solutions

AVC LOOSELEAF CHEMISTRY W/CONNECT 2 SEM

Ch. 23.5 - Determine the number of unpaired electrons in the...Ch. 23 - What distinguishes a transition metal from a...Ch. 23 - Why is zinc not considered a transition metal?Ch. 23 - Explain why atomic radii decrease very gradually...Ch. 23 - Without referring to the text, write the...Ch. 23 - Write the electron configurations of the following...Ch. 23 - Why do transition metals have more oxidation...Ch. 23 - Prob. 23.7QPCh. 23 - Prob. 23.8QPCh. 23 - Define the following terms: coordination compound,...Ch. 23 - Describe the interaction between a donor atom and...Ch. 23 - Prob. 23.11QPCh. 23 - Prob. 23.12QPCh. 23 - Prob. 23.13QPCh. 23 - Prob. 23.14QPCh. 23 - Prob. 23.15QPCh. 23 - What are the systematic names for the following...Ch. 23 - Prob. 23.17QPCh. 23 - Prob. 23.18QPCh. 23 - Define the following terms: stereoisomers,...Ch. 23 - Prob. 23.20QPCh. 23 - Prob. 23.21QPCh. 23 - Prob. 23.22QPCh. 23 - Prob. 23.23QPCh. 23 - Prob. 23.24QPCh. 23 - Draw structures of all the geometric and optical...Ch. 23 - Prob. 23.26QPCh. 23 - Briefly describe crystal field theory.Ch. 23 - Prob. 23.28QPCh. 23 - What is the origin of color in a coordination...Ch. 23 - Prob. 23.30QPCh. 23 - Prob. 23.31QPCh. 23 - Prob. 23.32QPCh. 23 - Prob. 23.33QPCh. 23 - Prob. 23.34QPCh. 23 - Prob. 23.35QPCh. 23 - The absorption maximum for the complex ion...Ch. 23 - Prob. 23.37QPCh. 23 - A solution made by dissolving 0.875 g of...Ch. 23 - Prob. 23.39QPCh. 23 - Prob. 23.40QPCh. 23 - Prob. 23.41QPCh. 23 - The [Fe(CN)6]3 complex is more labile than the...Ch. 23 - Aqueous copper(II) sulfate solution is blue in...Ch. 23 - When aqueous potassium cyanide is added to a...Ch. 23 - A concentrated aqueous copper(II) chloride...Ch. 23 - Prob. 23.46QPCh. 23 - As we read across the first-row transition metals...Ch. 23 - Prob. 23.48QPCh. 23 - Prob. 23.49QPCh. 23 - Prob. 23.50QPCh. 23 - Prob. 23.51QPCh. 23 - Chemical analysis shows that hemoglobin contains...Ch. 23 - Explain the following facts: (a) Copper and iron...Ch. 23 - A student in 1895 prepared three coordination...Ch. 23 - Prob. 23.55QPCh. 23 - From the standard reduction potentials listed in...Ch. 23 - Using the standard reduction potentials listed in...Ch. 23 - The Co2+-porphyrin complex is more stable than the...Ch. 23 - Prob. 23.59QPCh. 23 - Prob. 23.60QPCh. 23 - Hydrated Mn2+ ions are practically colorless (see...Ch. 23 - Which of the following hydrated cations are...Ch. 23 - Prob. 23.63QPCh. 23 - Prob. 23.64QPCh. 23 - Prob. 23.65QPCh. 23 - Prob. 23.66QPCh. 23 - The compound 1,1,1-trifluoroacetylacetone (tfa) is...Ch. 23 - Prob. 23.68QPCh. 23 - Prob. 23.69QPCh. 23 - Prob. 23.70QPCh. 23 - Prob. 23.71QPCh. 23 - Commercial silver-plating operations frequently...Ch. 23 - Draw qualitative diagrams for the crystal field...Ch. 23 - (a) The free Cu(I) ion is unstable in solution and...Ch. 23 - Prob. 23.75QPCh. 23 - Prob. 23.76QP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
  • Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY