Concept explainers
(a)
Interpretation:
The coordination number of the metal ion and the number of individual ions per formula unit have has to be given.
Concept introduction:
Coordination number:
The coordination number is the number of ligand atoms bonded directly to the central metal ion in a complex ion.
Oxidation number: (Oxidation state) A number equal to the magnitude of the charge an atom would have if its shared electrons were transferred to the atom that attracts them more strongly.
- 1. The cation is named before the anion.
- 2. Within a complex ion, the Ligands are arranged in an alphabetical order followed by the metal ion name. The anionic Ligand should ends with a letter –o, the neutral Ligand are called by the molecules (some common name for some exception).
- 3. When more Ligands are present, Greek prefixes like di, tri, tetra, penta, and hexa to specify their number.
- 4. The oxidation number of the metal is represented in roman numerals immediately following the metal ion name.
- 5. If the complex ion is an anion, the metal name should end with –ate.
(b)
Interpretation:
The coordination number of the metal ion and the number of individual ions per formula unit have has to be given.
Concept introduction:
Coordination number:
The coordination number is the number of ligand atoms bonded directly to the central metal ion in a complex ion.
Oxidation number: (Oxidation state) A number equal to the magnitude of the charge an atom would have if its shared electrons were transferred to the atom that attracts them more strongly.
- 1. The cation is named before the anion.
- 2. Within a complex ion, the Ligands are arranged in an alphabetical order followed by the metal ion name. The anionic Ligand should ends with a letter –o, the neutral Ligand are called by the molecules (some common name for some exception).
- 3. When more Ligands are present, Greek prefixes like di, tri, tetra, penta, and hexa to specify their number.
- 4. The oxidation number of the metal is represented in roman numerals immediately following the metal ion name.
- 5. If the complex ion is an anion, the metal name should end with –ate.
(c)
Interpretation:
The coordination number of the metal ion and the number of individual ions per formula unit have has to be given.
Concept introduction:
Coordination number:
The coordination number is the number of ligand atoms bonded directly to the central metal ion in a complex ion.
Oxidation number: (Oxidation state) A number equal to the magnitude of the charge an atom would have if its shared electrons were transferred to the atom that attracts them more strongly.
- 1. The cation is named before the anion.
- 2. Within a complex ion, the Ligands are arranged in an alphabetical order followed by the metal ion name. The anionic Ligand should ends with a letter –o, the neutral Ligand are called by the molecules (some common name for some exception).
- 3. When more Ligands are present, Greek prefixes like di, tri, tetra, penta, and hexa to specify their number.
- 4. The oxidation number of the metal is represented in roman numerals immediately following the metal ion name.
- 5. If the complex ion is an anion, the metal name should end with –ate.

Want to see the full answer?
Check out a sample textbook solution
Chapter 23 Solutions
CHEMISTRY MOLECULAR NATURE OF MATTER AND
- + Predict the major product of the following reaction. : ☐ + ☑ ค OH H₂SO4 Click and drag to start drawing a structure.arrow_forwardConsider this organic reaction: ... OH CI Draw the major products of the reaction in the drawing area below. If there won't be any major products, because this reaction won't happen at a significant rate, check the box under the drawing area instead. ☐ No Reaction. Click and drag to start drawing a structure. : аarrow_forwardConsider the following reactants: Br Would elimination take place at a significant rate between these reactants? Note for advanced students: by significant, we mean that the rate of elimination would be greater than the rate of competing substitution reactions. yes O no If you said elimination would take place, draw the major products in the upper drawing area. If you said elimination would take place, also draw the complete mechanism for one of the major products in the lower drawing area. If there is more than one major product, you may draw the mechanism that leads to any of them. Major Products:arrow_forward
- Draw one product of an elimination reaction between the molecules below. Note: There may be several correct answers. You only need to draw one of them. You do not need to draw any of the side products of the reaction. OH + ! : ☐ + Х Click and drag to start drawing a structure.arrow_forwardFind one pertinent analytical procedure for each of following questions relating to food safety analysis. Question 1: The presence of lead, mercury and cadmium in canned tuna Question 2: Correct use of food labellingarrow_forwardFormulate TWO key questions that are are specifically in relation to food safety. In addition to this, convert these questions into a requirement for chemical analysis.arrow_forward
- What are the retrosynthesis and forward synthesis of these reactions?arrow_forwardWhich of the given reactions would form meso product? H₂O, H2SO4 III m CH3 CH₂ONa CH3OH || H₂O, H2SO4 CH3 1. LiAlH4, THF 2. H₂O CH3 IVarrow_forwardWhat is the major product of the following reaction? O IV III HCI D = III ა IVarrow_forward
- The reaction of what nucleophile and substrate is represented by the following transition state? CH3 CH3O -Br อ δ CH3 Methanol with 2-bromopropane Methanol with 1-bromopropane Methoxide with 1-bromopropane Methoxide with 2-bromopropanearrow_forwardWhat is the stepwise mechanism for this reaction?arrow_forward32. Consider a two-state system in which the low energy level is 300 J mol 1 and the higher energy level is 800 J mol 1, and the temperature is 300 K. Find the population of each level. Hint: Pay attention to your units. A. What is the partition function for this system? B. What are the populations of each level? Now instead, consider a system with energy levels of 0 J mol C. Now what is the partition function? D. And what are the populations of the two levels? E. Finally, repeat the second calculation at 500 K. and 500 J mol 1 at 300 K. F. What do you notice about the populations as you increase the temperature? At what temperature would you expect the states to have equal populations?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





