Concept explainers
Example 23.3 derives the exact expression for the electric field at a point on the axis of a uniformly charged disk. Consider a disk of radius R = 3.00 cm having a uniformly distributed charge of +5.20 μC. (a) Using the result of Example 23.3, compute the electric field at a point on the axis and 3.00 mm from the center. (b) What If? Explain how the answer to part (a) compares with the field computed from the near-field approximation E = σ/2ϵ0. (We derived this expression in Example 23.3.) (c) Using the result of Example 23.3, compute the electric field at a point on the axis and 30.0 cm from the center of the disk. (d) What If? Explain how the answer to part (c) compares with the electric field obtained by treating the disk as a +5.20-μC charged particle at a distance of 30.0 cm.
(a)
The electric field at a point on the axis at a distance
Answer to Problem 23.41P
The electric field at a point on the axis and
Explanation of Solution
The value of the charge is
The formula to calculate the surface charge density is,
The formula to calculate the area is,
Substitute
Substitute
The formula to calculate the electric field at a point from the center of a uniformly charged disk is,
Here,
Conclusion:
Substitute
Therefore, the electric field at a point on the axis and
(b)
The change in electric field when calculated using near field approximation.
Answer to Problem 23.41P
The magnitude of electric field when computed from near field approximation is
Explanation of Solution
The formula to calculate the electric field at a point from the center of a uniformly charged disk is,
Here,
Conclusion:
Substitute
The value of electric field for uniformly charged disk for a point
The formula to calculate the percentage change with respect to the field computed from near field approximation is,
Therefore, the magnitude of electric field when computed from near field approximation is
(c)
The electric field at a point on the axis at a distance
Answer to Problem 23.41P
The electric field at a point on the axis and
Explanation of Solution
The value of the charge is
The formula to calculate the surface charge density is,
The formula to calculate the area is,
Substitute
Substitute
The formula to calculate the electric field at a point from the center of a uniformly charged disk is,
Here,
Conclusion:
Substitute
Therefore, the electric field at a point on the axis and
(d)
The change in electric field at
Answer to Problem 23.41P
The magnitude of electric field obtained by treating the disk as a
Explanation of Solution
The formula to calculate the electric field of a charged particle is,
Here,
Substitute
the percentage change when part (c) is compared with the field obtained by treating the disk as a
The value of electric field for uniformly charged disk at a point
The value of the electric field while approximating the disc to be a point charge is
Conclusion:
The formula to calculate the percentage change when part (c) is compared with the field obtained by treating the disk as a
Therefore, the magnitude of electric field obtained by treating the disk as a point charge at a distance of
Want to see more full solutions like this?
Chapter 23 Solutions
Physics for Scientists and Engineers, Volume 1
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Can you help me solve these questions please so i can see how to do itarrow_forwardHow can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning