Concept explainers
Example 23.3 derives the exact expression for the electric field at a point on the axis of a uniformly charged disk. Consider a disk of radius R = 3.00 cm having a uniformly distributed charge of +5.20 μC. (a) Using the result of Example 23.3, compute the electric field at a point on the axis and 3.00 mm from the center. (b) What If? Explain how the answer to part (a) compares with the field computed from the near-field approximation E = σ/2ϵ0. (We derived this expression in Example 23.3.) (c) Using the result of Example 23.3, compute the electric field at a point on the axis and 30.0 cm from the center of the disk. (d) What If? Explain how the answer to part (c) compares with the electric field obtained by treating the disk as a +5.20-μC charged particle at a distance of 30.0 cm.
(a)
The electric field at a point on the axis at a distance
Answer to Problem 23.41P
The electric field at a point on the axis and
Explanation of Solution
The value of the charge is
The formula to calculate the surface charge density is,
The formula to calculate the area is,
Substitute
Substitute
The formula to calculate the electric field at a point from the center of a uniformly charged disk is,
Here,
Conclusion:
Substitute
Therefore, the electric field at a point on the axis and
(b)
The change in electric field when calculated using near field approximation.
Answer to Problem 23.41P
The magnitude of electric field when computed from near field approximation is
Explanation of Solution
The formula to calculate the electric field at a point from the center of a uniformly charged disk is,
Here,
Conclusion:
Substitute
The value of electric field for uniformly charged disk for a point
The formula to calculate the percentage change with respect to the field computed from near field approximation is,
Therefore, the magnitude of electric field when computed from near field approximation is
(c)
The electric field at a point on the axis at a distance
Answer to Problem 23.41P
The electric field at a point on the axis and
Explanation of Solution
The value of the charge is
The formula to calculate the surface charge density is,
The formula to calculate the area is,
Substitute
Substitute
The formula to calculate the electric field at a point from the center of a uniformly charged disk is,
Here,
Conclusion:
Substitute
Therefore, the electric field at a point on the axis and
(d)
The change in electric field at
Answer to Problem 23.41P
The magnitude of electric field obtained by treating the disk as a
Explanation of Solution
The formula to calculate the electric field of a charged particle is,
Here,
Substitute
the percentage change when part (c) is compared with the field obtained by treating the disk as a
The value of electric field for uniformly charged disk at a point
The value of the electric field while approximating the disc to be a point charge is
Conclusion:
The formula to calculate the percentage change when part (c) is compared with the field obtained by treating the disk as a
Therefore, the magnitude of electric field obtained by treating the disk as a point charge at a distance of
Want to see more full solutions like this?
Chapter 23 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Plz plz no chatgpt pls will upvote .arrow_forwardYou want to determine if a new material created for solar panels increases the amount of energy that can be captured . You have acquired 15 panels of different sizes manufactured with different materials including the new material.You decide to set up an experiment to solve this problem .What do you think are the 3 most important variables to address in your experience? How would you incorporate those materials in your experiment?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Why can't this be correct: &= 7m?arrow_forwardgive a brief definition of the word "paradigm" as well as an example of a current scientific paradigmarrow_forward7. Are all scientific theories testable in the commonly understood sense? How does this make you feel? How should you proceed as a scientist or engineer with this understanding?arrow_forward
- What is an an example of a hypothesis that sounds scientific but is notarrow_forwardWhat is an example of a scientific hypothesisarrow_forwardMultiverse is called a theory. It has been proposed to account for the apparent and uncanny fine tuning of our own universe. The idea of the multiverse is that there are infinite, distinct universes out there - all with distinct laws of nature and natural constants - and we live in just one of them. Using the accepted definition of the universe being all that there is (matter, space and energy), would you say that multiverse is a scientific theory?arrow_forward
- How is a law usually different than a theoryarrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning