Concept explainers
a)
Interpretation: The geometric and optical isomer structures for the given complex ion need to draw.
Concept Introduction:
Geometry of coordination compounds: The study of geometry of the coordination compound helps in understanding the physical and chemical property of the compound.
Stereoisomer: The same molecular formula but different with the arrangements of atoms around the metal ion. The Ligands are arranged differently in coordination compounds.
Geometric isomers: stereoisomers that cannot be interconverted without breaking the
Optical isomers: Optical isomers are non-superimposable mirror images.
Plane-polarized light: Light that oscillates in a single plane.
To Identify: Geometric isomers and optical isomer structure for the given complex ion to be drawn.
b)
Interpretation: The geometric and optical isomer structures for the given complex ion need to draw.
Concept Introduction:
Geometry of coordination compounds: The study of geometry of the coordination compound helps in understanding the physical and chemical property of the compound.
Stereoisomer: The same molecular formula but different with the arrangements of atoms around the metal ion. The Ligands are arranged differently in coordination compounds.
Geometric isomers: stereoisomers that cannot be interconverted without breaking the chemical bonds.
Optical isomers: Optical isomers are non-superimposable mirror images.
Plane-polarized light: Light that oscillates in a single plane.
To Identify: Geometric isomers and optical isomer structure for the given complex ion to be drawn.
Want to see the full answer?
Check out a sample textbook solutionChapter 23 Solutions
ALEKS 360; 18WKS F/ GEN. CHEMISTRY >I<
- Four different octahedral chromium coordination compounds exist that all have the same oxidation state for chromium and have H2O and Cl as the ligands and counterions. When 1 mole of each of the four compounds is dissolved in water, how many moles of silver chloride will precipitate upon addition of excess AgNO3?arrow_forwardPlatinum(II) forms many complexes, among them those with the following ligands. Give the formula and charge of each complex. (a) two ammonia molecules and one oxalate ion (C2O42-) (b) two ammonia molecules, one thiocyanate ion (SCN-), and one bromide ion (c) one ethylenediamine molecule and two nitrite ionsarrow_forwardPredict the number of unpaired spins in:- [Cr(en)3]2+ (ethylenediamine is a strong field ligand). - [Mn(H2O)6]2+ (water is a weak field ligand).arrow_forward
- For which of the following octahedral complexes are isomers possible? Please please Draw all the isomers. [FeCl(OH2)5]2+, [IrCl3(PEt3)3], [Ru(bpy)3]2+, [CoCl2(en)(NH3)2]+, [W(CO)4(py)2].arrow_forwardall parts please Draw the structure of the complex, [Ni(NH3)6][BF4]2, including approximate bond angles (in °). Deduce its geometry and state the coordination number of the metal. State the type of bonding in the complex and explain what you understand by this type of bonding.arrow_forwardName and draw all the possible stereoisomers (diastereoisomers, enantiomers) of the following complexes, which you expect to be optically active? Why? [Rh(H2O)4Cl2]NO2 [Ir(PR3)2(H)(CO)] [V(NH3)3Cl3] [Co(CO)2(en)ClBr]NO2arrow_forward
- Explain how experimental determination of the number of geometric isomers of [Co(NH3)4Cl]2+ would enable you to demonstrate that the coordination geometry is octahedral and not trigonal prismatic.arrow_forwardIn both [Fe(H2O)6]2+ and [Fe(CN)6]4- ions, the iron is present as Fe(II); however, one of these complexes is paramagnetic, whereas the other is diamagnetic. Please write the electronic configuration of d-orbital for these two complexes and explain this difference.arrow_forwardWhich of the following compounds can exhibit cis-trans isomerism? [Cr(H2O)6]3+ [Cu(CO)5Cl]+ [Ni(CO)2(NH3)2]2+ [MnClBr3]2- [Fe(CO)5NO2]2+arrow_forward
- Cobalt (II) chloride can form two complexes when dissolved in water: [Co(H2O)6]2+(aq) which is pink in colour, and [CoCl4]2- which is blue. The equilibrium system isarrow_forwardSolutions of [Co(NH3)6]2+, [Co(H2O)6]2+ (both octahedral) and [CoCl4]2– (tetrahedral) are colorful. One is pink, one is blue and the other is Based on the spectrochemical series, assign a color for each complex.arrow_forwardName each of the compounds or ions given, including the oxidation state of the metal. (a) [Co(CO3)3]3− (note that CO32− is bidentate in this complex)(b) [Cu(NH3)4]2+(c) [Co(NH3)4Br2]2(SO4)3(d) [Pt(NH3)4][PtCl4](e) [Cr(en)3](NO3)3(f) [Pd(NH3)2Br2] (square planar)(g) K3[Cu(Cl)5](h) [Zn(NH3)2Cl2]arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning