Concept explainers
(a)
To find: The proportions of failures for businesses headed by women and businesses headed by men.
To test: Whether the same proportion of women’s and men’s businesses fails or not.
To find: The hypotheses, the test statistic, P-value and conclusion.
(a)

Answer to Problem 23.25E
The proportion of failures for businesses headed by men is 0.1415.
The proportion of failures for businesses headed by women is 0.1666.
The null hypothesis is
The alternative hypothesis is
The value of the z-statistic is –0.39.
The P-value is 0.698.
The conclusion is that, the same proportion of women’s and men’s businesses fails.
Explanation of Solution
Given info:
In the survey, 15 out of 106 were headed by men failed and 7 out of 42 were headed by women failed.
Calculation:
PLAN:
Check whether the same proportion of women’s and men’s businesses fails or not.
State the test hypotheses.
Null hypothesis:
Alternative hypothesis:
SOLVE:
Test statistic and P-value:
Software procedure:
Step by step procedure to obtain proportion, test statistic and P-value using the MINITAB software:
- Choose Stat > Basic Statistics > 2 Proportions.
- Choose Summarized data.
- In First sample, enter Trials as 106 and
Events as 15. - In Second sample, enter Trials as 42 and Events as 7.
- Choose Options.
- Choose Pooled proportions.
- In Confidence level, enter 95.
- In Alternative, select not equal.
- Click OK in all the dialogue boxes.
Output using the MINITAB software is given below:
From the MINITAB output,
The proportion of failures for businesses headed by men is 0.1415.
The proportion of failures for businesses headed by women is 0.1666.
The value of the z-statistic is –0.39.
The P-value is 0.698.
CONCLUDE:
The P-value is 0.698 and the significance level is 0.05.
Here, the P-value is greater than the significance level.
That is,
Therefore, using the rejection rule, it can be concluded that there is no evidence to reject
Thus, the same proportion of women’s and men’s businesses fails.
(b)
To find: The proportions of failures for businesses headed by women and businesses headed by men.
To test: Whether the same proportion of women’s and men’s businesses fails or not.
To find: The hypotheses, the test statistic, P-value and conclusion.
(b)

Answer to Problem 23.25E
The proportion of failures for businesses headed by men is 0.1415.
The proportion of failures for businesses headed by women is 0.1666.
The null hypothesis is
The alternative hypothesis is
The value of the z-statistic is –2.12.
The P-value is 0.034.
The conclusion is that, there is no evidence that the same proportion of women’s and men’s businesses fails.
Explanation of Solution
Given info:
In the survey, 210 out of 1,260 were headed by women failed and 450 out of 3,180 were headed by men failed.
Calculation:
PLAN:
Check whether the same proportion of women’s and men’s businesses fails or not.
State the test hypotheses.
Null hypothesis:
Alternative hypothesis:
SOLVE:
Test statistic and P-value:
Software procedure:
Step by step procedure to obtain proportion, test statistic and P-value using the MINITAB software:
- Choose Stat > Basic Statistics > 2 Proportions.
- Choose Summarized data.
- In First sample, enter Trials as 3,180 and Events as 450.
- In Second sample, enter Trials as 1,260 and Events as 210.
- Choose Options.
- Choose Pooled proportions.
- In Confidence level, enter 95.
- In Alternative, select not equal.
- Click OK in all the dialogue boxes.
Output using the MINITAB software is given below:
From the MINITAB output,
The proportion of failures for businesses headed by men is 0.1415.
The proportion of failures for businesses headed by women is 0.1666.
The value of the z-statistic is –2.12.
The P-value is 0.034.
CONCLUDE:
The P-value is 0.034 and the significance level is 0.05.
Here, the P-value is less than the significance level.
That is,
Therefore, using the rejection rule, it can be concluded that there is evidence to reject
Thus, there is no evidence that the same proportion of women’s and men’s businesses fails.
(c)
To find: The 95% confidence interval for the difference between the proportions of women’s and men’s businesses that fail for the settings of part (a).
To find: The 95% confidence interval for the difference between the proportions of women’s and men’s businesses that fail for the settings of part (b).
To identify: The effect of larger samples on the confidence interval.
(c)

Answer to Problem 23.25E
The 95% confidence interval for the difference between the proportions of women’s and men’s businesses that fail for the settings of part (a) is
The 95% confidence interval for the difference between the proportions of women’s and men’s businesses that fail for the settings of part (b) is
The effect of larger samples on the confidence interval is that the confidence interval is narrow.
Explanation of Solution
Given info:
In the survey, 210 out of 1,260 were headed by women failed and 450 out of 3,180 were headed by men failed.
Calculation:
From part (a), the 95% confidence interval for the difference between the proportions of women’s and men’s businesses that fail for the settings of part (a) is
From part (b), the 95% confidence interval for the difference between the proportions of women’s and men’s businesses that fail for the settings of part (b) is
Justification:
From the results, it can be observed that the confidence interval is narrow if the sample is 30 times large.
Want to see more full solutions like this?
Chapter 23 Solutions
BASIC PRACTICE OF STATISTICS+LAUNCHPAD
- A survey of 581 citizens found that 313 of them favor a new bill introduced by the city. We want to find a 95% confidence interval for the true proportion of the population who favor the bill. What is the lower limit of the interval? Enter the result as a decimal rounded to 3 decimal digits. Your Answer:arrow_forwardLet X be a continuous RV with PDF where a > 0 and 0 > 0 are parameters. verify that f-∞ /x (x)dx = 1. Find the CDF, Fx (7), of X.arrow_forward6. [20] Let X be a continuous RV with PDF 2(1), 1≤x≤2 fx(x) = 0, otherwisearrow_forward
- A survey of 581 citizens found that 313 of them favor a new bill introduced by the city. We want to find a 95% confidence interval for the true proportion of the population who favor the bill. What is the lower limit of the interval? Enter the result as a decimal rounded to 3 decimal digits. Your Answer:arrow_forwardA survey of 581 citizens found that 313 of them favor a new bill introduced by the city. We want to find a 95% confidence interval for the true proportion of the population who favor the bill. What is the lower limit of the interval? Enter the result as a decimal rounded to 3 decimal digits. Your Answer:arrow_forward2. The SMSA data consisting of 141 observations on 10 variables is fitted by the model below: 1 y = Bo+B1x4 + ẞ2x6 + ẞ3x8 + √1X4X8 + V2X6X8 + €. See Question 2, Tutorial 3 for the meaning of the variables in the above model. The following results are obtained: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.302e+03 4.320e+02 3.015 0.00307 x4 x6 x8 x4:x8 x6:x8 -1.442e+02 2.056e+01 -7.013 1.02e-10 6.340e-01 6.099e+00 0.104 0.91737 -9.455e-02 5.802e-02 -1.630 0.10550 2.882e-02 2.589e-03 11.132 1.673e-03 7.215e-04 2.319 F) x4 1 3486722 3486722 17.9286 4.214e-05 x6 1 14595537 x8 x4:x8 x6:x8 1 132.4836 < 2.2e-16 1045693 194478 5.3769 0.02191 1 1198603043 1198603043 6163.1900 < 2.2e-16 1 25765100 25765100 1045693 Residuals 135 26254490 Estimated variance matrix (Intercept) x4 x6 x8 x4:x8 x6:x8 (Intercept) x4 x6 x8 x4:x8 x6:x8 0.18875694 1.866030e+05 -5.931735e+03 -2.322825e+03 -16.25142055 0.57188953 -5.931735e+03 4.228816e+02 3.160915e+01 0.61621781 -0.03608028 -0.00445013 -2.322825e+03…arrow_forward
- In some applications the distribution of a discrete RV, X resembles the Poisson distribution except that 0 is not a possible value of X. Consider such a RV with PMF where 1 > 0 is a parameter, and c is a constant. (a) Find the expression of c in terms of 1. (b) Find E(X). (Hint: You can use the fact that, if Y ~ Poisson(1), the E(Y) = 1.)arrow_forwardSuppose that X ~Bin(n,p). Show that E[(1 - p)] = (1-p²)".arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forward
- I need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forwardThis exercise is based on the following data on four bodybuilding supplements. (Figures shown correspond to a single serving.) Creatine(grams) L-Glutamine(grams) BCAAs(grams) Cost($) Xtend(SciVation) 0 2.5 7 1.00 Gainz(MP Hardcore) 2 3 6 1.10 Strongevity(Bill Phillips) 2.5 1 0 1.20 Muscle Physique(EAS) 2 2 0 1.00 Your personal trainer suggests that you supplement with at least 10 grams of creatine, 39 grams of L-glutamine, and 90 grams of BCAAs each week. You are thinking of combining Xtend and Gainz to provide you with the required nutrients. How many servings of each should you combine to obtain a week's supply that meets your trainer's specifications at the least cost? (If an answer does not exist, enter DNE.) servings of xtend servings of gainzarrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





