
The underlying premises and definitions that shape the arguments based on the warning of ecologists that people are using up irreplaceable natural resources and the response of economists that ingenuity and enterprise would find substitutes for most resources.

Answer to Problem 23.1CTDQ
The ecologists are right on their point when they said that people are using irreplaceable natural resources that are in limited quantities and might get run out of the stock whereas economists responded that most of the resources would be substituted with an alternative in future according to the scarcity of the particular resource.
Explanation of Solution
The irreplaceable natural resources are also known as the non-renewable resources. These resources cannot be renewed again. The examples of irreplaceable or non-renewable natural resources are solar energy, water, oxygen and many more. The finite reserves of the natural resources are depleting day by day due to the effects of pollution. This depletion is a great threat especially for the irreplaceable or non-renewable natural resources because they are not replaceable.
The ecologists have correctly said that people are using those resources which are not replaceable or renewed means if these resources would get over then it would never be available again. Anything which is in limited amounts might get run out of stock and it depends upon the rate of consumption.
Whereas the economists argued that ingenuity and enterprise would find substitutes for most resources. They meant to say that most of the resources would be substituted. It has been a continuous increment in the commodity prices and the hikes in the prices of the commodity are exerting pressure on the companies and consumers to see any other alterative which is relatively cheaper than the costly commodity. For example, the hiked-price of petroleum which is present in the limited quantity and might be its supply would get over after sometime in future due to scarcity. Due to the present situation of oil crisis and hiking fuel prices, many companies and scientists have introduced the concept of solar power and wind energy which might be the possible alternate to petroleum oil if petroleum oil would completely run out of the stock in future.
Want to see more full solutions like this?
Chapter 23 Solutions
EBK ENVIRONMENTAL SCIENCE
- I need help with part A, B and Carrow_forwardDiscussion Question: Atmospheric Water & Weather A+ This chapter beautifully focuses on water from the small molecular scale to large-scale weather patterns. The surplus of heat at the equator and the deficit at the Poles drives our atmospheric instability. Instability is a good thing! Without the unstable conditions, there would not be any atmospheric motion. The overheating of the equator pumps atmospheric uplift. As the air rises into lower pressures, it expands and cools... adiabatic cooling! The air migrates north and south and becomes denser than the surrounding air and sinks. The sinking air enters higher pressures and creates the subtropical high pressures and adiabatic heating...whaaaa-la! We have Hadley Cells! Not to mention, the Rainforests and World's largest deserts too! We now can imagine the Hadley cells in three-dimensions. They more or less "sandwich" the equator during the spring and fall equinoxes. However, what happens in the summer and winter? mP Maritime polar…arrow_forwardUsing the map. Solve part e f garrow_forward
- Answer the below questions in detail using the attached pictures. Please ensure it is all 100% done by human, please do not use AI or chatgpt. using the provided hydraulic head data (attached spreadsheet), plot the values at their corresponding piezometer locations (attached piezometer map), contour the head data to create equipotential lines that allow you to demonstrate the groundwater flow direction, indicate the flow direction with arrows, provide comments/observations about the characteristics of the groundwater flow system, for example, are the equipotential lines equally spaced? If not, can you comment on why there are areas with close spacing and other areas with wide spacing? Are there any areas where the aquifer displays artesian conditions? If so, where?arrow_forwardPlease answer the question in detail. Please ensure it is 100% done by human, please do not use AI or chatgpt. Organize your spreadsheets carefully and make sure they are easy to follow. Make sure that your units are consistent, use SI units and make sure your graphs are clear and well labelled.arrow_forwardPlease answer each question in detail. Please ensure it is 100% done by human, please do not use AI or chatgpt.arrow_forward
- I need help on this questionarrow_forwardPlease answer the question in detail. Please ensure it is 100% done by human, please do not use AI or chatgpt.arrow_forwardAnswer the below questions in detail using the attached pictures using the provided hydraulic head data (attached spreadsheet), plot the values at their corresponding piezometer locations (attached piezometer map), contour the head data to create equipotential lines that allow you to demonstrate the groundwater flow direction, indicate the flow direction with arrows, provide comments/observations about the characteristics of the groundwater flow system, for example, are the equipotential lines equally spaced? If not, can you comment on why there are areas with close spacing and other areas with wide spacing? Are there any areas where the aquifer displays artesian conditions? If so, where?arrow_forward
- Please answer the three questions in detail and as best as you can. plotting grain-size distribution curves from the grain data provided, calculating D10 values for each sample and using it to estimate the hydraulic conductivity, calculating the porosity for each sample Please ensure it is 100% done by human, please do not use AI or chatgpt.arrow_forwardPlease answer the question in detail. Please ensure it is 100% done by human, please do not use AI or chatgpt.arrow_forwardActivity 9.4 Depositional Features of Glaciers Pg 158Use Figure 9.7, which illustrates a hypothetical retreating glacier, to complete the following. 1. As a glacier retreats, it sometimes stalls and deposits a recessional end moraine. Label the recessional end moraine on Figure 9.7. 2. On Figure 9.7, label an area covered by ground moraine. 3. On Figure 9.7, fill in the appropriate blanks with the names of the following depositional features: kettle lake, kame, drumlin, esker, and outwash plain. 4. Which area is composed of stratified drift: the ground moraine or the outwash plain? Activity 9.5 Depositional Features Associated with Ice Sheets Pgs 159-1611. After examining the map and stereogram, draw a line on the map to outline the area illustrated on the stereogram. 2. What evidence on the map indicates that portions of the area are poorly drained? On what part of the map are these features located? 3. Use Figure 9.11 to draw a topographic profile of the X-Y line on Figure 9.10.…arrow_forward
- Applications and Investigations in Earth Science ...Earth ScienceISBN:9780134746241Author:Edward J. Tarbuck, Frederick K. Lutgens, Dennis G. TasaPublisher:PEARSONExercises for Weather & Climate (9th Edition)Earth ScienceISBN:9780134041360Author:Greg CarbonePublisher:PEARSONEnvironmental ScienceEarth ScienceISBN:9781260153125Author:William P Cunningham Prof., Mary Ann Cunningham ProfessorPublisher:McGraw-Hill Education
- Earth Science (15th Edition)Earth ScienceISBN:9780134543536Author:Edward J. Tarbuck, Frederick K. Lutgens, Dennis G. TasaPublisher:PEARSONEnvironmental Science (MindTap Course List)Earth ScienceISBN:9781337569613Author:G. Tyler Miller, Scott SpoolmanPublisher:Cengage LearningPhysical GeologyEarth ScienceISBN:9781259916823Author:Plummer, Charles C., CARLSON, Diane H., Hammersley, LisaPublisher:Mcgraw-hill Education,





