Numerical Methods for Engineers
Numerical Methods for Engineers
7th Edition
ISBN: 9780073397924
Author: Steven C. Chapra Dr., Raymond P. Canale
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 23, Problem 20P

Use a Taylor series expansion to derive a centered finite-difference approximation to the third derivative that is second-order accurate. To do this, you will have to use four different expansions for the points x i 2 , x i 1 , x i + 1 , and x i + 2 . In each case, the expansion will be around the point x i . The interval Δ x will be used in each case of i 1 and i + 1 , and 2 Δ x will be used in each case of i 2 and i + 2 . The four equations must then be combined in a way to eliminate the first and second derivatives. Carry enough terms along in each expansion to evaluate the first term that will be truncated to determine the order of the approximation.

Expert Solution & Answer
Check Mark
To determine

A centered finite difference approximation to the third derivative with the help of Taylor series expansion.

Answer to Problem 20P

Solution:

f'''(xi)=f(xi+2)+f(xi2)2f(xi+1)+2f(xi1)2(Δx)314(Δx)2f5(xi)+....

Explanation of Solution

Given information:

Step size h=2Δx for i2 and i+2

Step size h=Δx for i1 and i+1

Formula used:

The Taylor series expansion about a and x can be expressed as,

f(x)=f(a)+hf'(a)+12h2f"(a)+16h3f(a)+124h4f4(a)                 +1120h5f5(a)+

Calculation:

The Taylor series expansion about a and x is,

f(x)=f(a)+hf'(a)+12h2f"(a)+16h3f(a)+124h4f4(a)                 +1120h5f5(a)+

For forward expansion, substitute a=xi,h=2Δx and x=xi+2 in Taylor series expansion,

f(xi+2)=f(xi)+(2Δx)f'(xi)+12(2Δx)2f"(xi)+16(2Δx)3f(xi)+124(2Δx)4f4(xi) +1120(2Δx)5f5(xi)+f(xi+2)=f(xi)+2(Δx)f'(xi)+2(Δx)2f"(xi)+86(Δx)3f'''(xi)+1624(Δx)4f4(xi)+32120(Δx)5f5(xi)+

Now, substitute a=xi,h=Δx and x=xi+1 in Taylor series expansion,

f(xi+1)=f(xi)+(Δx)f'(xi)+12(Δx)2f"(xi)+16(Δx)3f(xi)+124(Δx)4 f4(xi) +1120(Δx)5f5(xi)+f(xi+1)=f(xi)+(Δx)f'(xi)+12(Δx)2f"(xi)+16(Δx)3f'''(xi)             +124(Δx)4 f4(xi)+1120(Δx)5f5(xi)+

Multiply above equation by 2,

2f(xi+1)=2f(xi)+2(Δx)f'(xi)+22(Δx)2f"(xi)+26(Δx)3f'''(xi)+224(Δx)4f4(xi)+2120(Δx)5f5(xi)+2f(xi+1)=2f(xi)+2(Δx)f'(xi)+(Δx)2f"(xi)+13(Δx)3f'''(xi)+112(Δx)4f4(xi)+160(Δx)5f5(xi)+

Thus, the value of f(xi+2)2f(xi+1) is,

f(xi+2)2f(xi+1)=f(xi)2f(xi)+2(Δx)f'(xi)2(Δx)f'(xi)+2(Δx)2f"(xi)(Δx)2f"(xi)+86(Δx)3f'''(xi)13(Δx)3f'''(xi)+1624(Δx)4f4(xi)112(Δx)4f4(xi)+32120(Δx)5f5(xi)160(Δx)5f5(xi)+

f(xi+2)2f(xi+1)=f(xi)+(Δx)2f"(xi)+(Δx)3f'''(xi)+712(Δx)4f4(xi)+14(Δx)5f5(xi)+..... …… (1)

For backward expansion, substitute a=xi,h=2Δx and x=xi2 in Taylor series expansion,

f(xi2)=f(xi)+(2Δx)f'(xi)+12(2Δx)2f"(xi)+16(2Δx)3f(xi)+124(2Δx)4f4(xi) +1120(2Δx)5f5(xi)+f(xi2)=f(xi)2(Δx)f'(xi)+2(Δx)2f"(xi)86(Δx)3f'''(xi)+1624(Δx)4f4(xi)32120(Δx)5f5(xi)+

Now, substitute a=xi,h=Δx and x=xi1 in Taylor series expansion,

f(xi1)=f(xi)+(Δx)f'(xi)+12(Δx)2f"(xi)+16(Δx)3f'''(xi)+124(Δx)4f4(xi) +1120(Δx)5f5(xi)+f(xi1)=f(xi)(Δx)f'(xi)+12(Δx)2f"(xi)16(Δx)3f'''(xi)             +124(Δx)4f4(xi)1120(Δx)5f5(xi)+

Multiply above equation by 2,

2f(xi1)=2f(xi)2(Δx)f'(xi)+22(Δx)2f"(xi)26(Δx)3f'''(xi)+224(Δx)4f4(xi)2120(Δx)5f5(xi)+2f(xi1)=2f(xi)2(Δx)f'(xi)+(Δx)2f"(xi)13(Δx)3f'''(xi)+112(Δx)4f4(xi)160(Δx)5f5(xi)+

Thus, the value of 2f(xi1)f(xi2) is,

2f(xi1)f(xi2)=2f(xi)f(xi)2(Δx)f'(xi)+2(Δx)f'(xi)+(Δx)2f"(xi)2(Δx)2f"(xi)13(Δx)3f'''(xi)+86(Δx)3f'''(xi)+112(Δx)4f4(xi)1624(Δx)4f4(xi)160(Δx)5f5(xi)+32120(Δx)5f5(xi)+

2f(xi1)f(xi2)=f(xi)(Δx)2f"(xi)+66(Δx)3f'''(xi)1424(Δx)4f4(xi)+30120(Δx)5f5(xi) …… (2)

Now, add equation (1) and equation (2),

f(xi+2)+f(xi2)2f(xi+1)+2f(xi1)=f(xi)(Δx)2f"(xi)+66(Δx)3f'''(xi)1424(Δx)4f4(xi)+30120(Δx)5f5(xi)f(xi)+(Δx)2f"(xi)+(Δx)3f'''(xi)+712(Δx)4f4(xi)+(Δx)54f5(xi)+.....f(xi+2)+f(xi2)2f(xi+1)+2f(xi1)=2(Δx)3f'''(xi)+(Δx)52f5(xi)

Rearrange the above equation as,

f'''(xi)=f(xi+2)+f(xi2)2f(xi+1)+2f(xi1)2(Δx)3(Δx)54f5(xi)(Δx)3+....f'''(xi)=f(xi+2)+f(xi2)2f(xi+1)+2f(xi1)2(Δx)3(Δx)24f5(xi)+....

Therefore, the centered finite-difference approximation to the third derivative which is second order correct is,

f'''(xi)=f(xi+2)+f(xi2)2f(xi+1)+2f(xi1)2(Δx)3(Δx)24f5(xi)+....

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Say that the function f(x) is x for -π < x < 0 and zero for 0 < x < π. Find the a0 coefficient for the Fourier Series.
SOLVE STEP BY STEP IN DIGITAL FORMAT 1. Find the Fourier series of f on [-3,3] f(x) = 0 for -3≤x≤0 x for 0 ≤ x ≤ 3.
Write the first three terms of the Taylor series for f(x) = Vx at a = 1. Show your reasoning

Chapter 23 Solutions

Numerical Methods for Engineers

Additional Math Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
College Algebra
Algebra
ISBN:9781938168383
Author:Jay Abramson
Publisher:OpenStax
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Power Series; Author: Professor Dave Explains;https://www.youtube.com/watch?v=OxVBT83x8oc;License: Standard YouTube License, CC-BY
Power Series & Intervals of Convergence; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=XHoRBh4hQNU;License: Standard YouTube License, CC-BY