
FOUNDATIONS OF ASTRON.-MINDTAP (2 TERM)
14th Edition
ISBN: 9781337399999
Author: Seeds
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 23, Problem 1RQ
Why didn’t ancient astronomers know of Uranus’s existence?
Expert Solution & Answer

To determine
The reason that the existence of Uranus was not known to ancient astronomers.
Answer to Problem 1RQ
The ancient astronomers thought Uranus as just a background star as it is too small and too far from the Earth that its movement is difficult to notice.
Explanation of Solution
Uranus was discovered in
Uranus is too small and too far from the Earth that it is difficult to notice it without a telescope.
Its larger time period shows that it moves very slowly around the Sun; therefore, ancient astronomers thought it as just another background star.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
How can you tell which vowel is being produced here ( “ee,” “ah,” or “oo”)? Also, how would you be able to tell for the other vowels?
You want to fabricate a soft microfluidic chip like the one below. How would you go about
fabricating this chip knowing that you are targeting a channel with a square cross-sectional
profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the
process to form the inlet and outlet.
Square Cross Section
1. What are the key steps involved in the fabrication of a semiconductor device.
2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer
with the pattern below. Describe the process you would use.
High Aspect
Ratio
Trenches
Undoped Si Wafer
P-doped Si
3. You would like to deposit material within a high aspect ratio trench. What approach would you
use and why?
4. A person is setting up a small clean room space to carry out an outreach activity to educate high
school students about patterning using photolithography. They obtained a positive photoresist, a
used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask
with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full
resist gets developed, and they are unable to transfer the pattern onto the resist. Help them
troubleshoot and find out why pattern of transfer has not been successful.
5. You are given a composite…
Chapter 23 Solutions
FOUNDATIONS OF ASTRON.-MINDTAP (2 TERM)
Ch. 23 - Why didnt ancient astronomers know of Uranuss...Ch. 23 - Describe the location of the equinoxes and...Ch. 23 - When during Uranuss seasonal cycle does every...Ch. 23 - How were the rotation periods of Uranus and...Ch. 23 - Why is belt-zone circulation difficult to detect...Ch. 23 - Prob. 6RQCh. 23 - Prob. 7RQCh. 23 - Describe four characteristics in common among all...Ch. 23 - Describe four differences between the two ice...Ch. 23 - Prob. 10RQ
Ch. 23 - What are hypotheses for the origin of the rings of...Ch. 23 - How do the characteristics of Uranuss and Neptunes...Ch. 23 - If Uranus and Neptune had no satellites at all,...Ch. 23 - Why might the surface brightness of ring particles...Ch. 23 - Both Uranus and Neptune have a blue-green tint...Ch. 23 - How are the atmospheres of Earth and Triton...Ch. 23 - Prob. 17RQCh. 23 - When Neptune was discovered, how was its position...Ch. 23 - How can small worlds like Triton and Pluto have...Ch. 23 - Why do you suspect that Triton had a geologically...Ch. 23 - If you visited the surface of Pluto and found...Ch. 23 - What evidence can you give that Pluto and Charon...Ch. 23 - Why was Pluto reclassified as a dwarf planet?Ch. 23 - How was the discovery of Neptune not accidental?Ch. 23 - What is the maximum angular diameter of Uranus as...Ch. 23 - One way to recognize a distant planet is by...Ch. 23 - What is the orbital velocity of Miranda around...Ch. 23 - Calculate Uranuss Roche radius. Are all of Uranuss...Ch. 23 - Prob. 5PCh. 23 - What is the escape velocity from the surface of an...Ch. 23 - What is the difference in the orbital velocities...Ch. 23 - Repeat Problem 2 for Pluto. In other words,...Ch. 23 - Given the size of Tritons orbit (r = 355,000 km)...Ch. 23 - Uranus is about 26,000 km in radius, and its main...Ch. 23 - Neptune is about 50,000 km in diameter, and its...Ch. 23 - Prob. 1LTLCh. 23 - Prob. 2LTLCh. 23 - Compare the interior cutaway sketches of the four...Ch. 23 - Prob. 4LTLCh. 23 - Review Figure 21-11. Which molecules can Triton...Ch. 23 - The image to the left shows how Uranus would look...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forwardAn electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave. What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all stepsarrow_forwardAnother worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk). Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?arrow_forward
- Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for z1z2∗. Find r and θ for z1/z2∗? Find r and θ for (z1−z2)∗/z1+z2∗. Find r and θ for (z1−z2)∗/z1z2∗ Please explain all steps, Thank youarrow_forwardAn ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude V, a 505-Ω resistor, and a capacitor of capacitance 7.2 μF. What must be the source voltage amplitude V for the average electrical power consumed in the resistor to be 236 W? There is no inductance in the circuit.arrow_forwardAn L−R−C series circuit has R= 280 Ω . At the frequency of the source, the inductor has reactance XLL= 905 Ω and the capacitor has reactance XC= 485 Ω . The amplitude of the voltage across the inductor is 445 V . What is the amplitude of the voltage across the resistor and the capacitor? What is the voltage amplitude of the source? What is the rate at which the source is delivering electrical energy to the circuit?arrow_forward
- A 0.185 H inductor is connected in series with a 98.5 Ω resistor and an ac source. The voltage across the inductor is vL=−(12.5V)sin[(476rad/s)t]vL. Derive an expression for the voltage vR across the resistor. Express your answer in terms of the variables L, R, VL (amplitude of the voltage across the inductor), ω, and t. What is vR at 2.13 ms ? Please explain all stepsarrow_forwardA worker lifts a box under the following conditions:Horizontal distance (H): 30 cmInitial height (V): 60 cmVertical travel (D): 50 cmTorso rotation (A): 30°Frequency: 3 times/minute for 1 hourGrip: Good Question:What is the RWL for this task?What does this value mean in terms of occupational safety?arrow_forwardCan someone helparrow_forward
- Can someone help mearrow_forward3. Four identical small masses are connected in a flat perfect square. Rank the relative rotational inertias (IA, IB, IC) about the three axes of rotation shown. Axes A and B are in the plane of the square, and axis C is perpendicular to the plane, through mass m1. ΙΑ IB m2 m1 m3 Ic m4 (a) IAarrow_forwardConsider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning


Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax


Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY