
Delmar's Standard Textbook Of Electricity
7th Edition
ISBN: 9781337900348
Author: Stephen L. Herman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 23, Problem 1RQ
What is the phase angle relationship of current and the voltage dropped across a pure resistance?
Expert Solution & Answer

To determine
The phase angle relationship of current and voltage dropped across a pure resistance.
Answer to Problem 1RQ
The phase angle between current and voltage in a pure resistance is zero degrees.
Explanation of Solution
In a pure resistance the current flowing in the resistance is in phase with the voltage drop across it. We say that phase difference between both parameters is zero degrees. The same can be seen in the phasor diagram shown above.
The ohms law for pure resistive circuit is written as,
It can be seen that there is no presence of any imaginary term in the equation above. Hence the phase angle is zero degrees.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
3)
Find the valve of V using the Thevenin Equivalent Circuit
and then determine if the 8 ohm resistor allows
maximum power transfer. If not, then what value
should the 8 ohm resist or be changed to for maximum
power transfer?
ZA
360
Am
6t
+
22V
V
3402
22
62
Mw
m
Find the valve of the voltage Vx using the THEVENIN
2) equivalent circuit and redo the problem with the
NORTON equivalent circuit. Show both the flavinen
and Norton Circuits
DAY
ww
1
23
www
+
4444
5
63
Figure shows the block diagram of a feedback control system with a disturbance signal N(s). Obtain the output Y(s) due to both R(s) and N(s).
Chapter 23 Solutions
Delmar's Standard Textbook Of Electricity
Ch. 23 - What is the phase angle relationship of current...Ch. 23 - What is the phase angle relationship of current...Ch. 23 - What is the phase angle relationship of current...Ch. 23 - An AC circuit has a frequency of 400 Hz. A 16-...Ch. 23 - If 440 V are connected to the circuit, how much...Ch. 23 - Prob. 6RQCh. 23 - What is the true power of the circuit in Question...Ch. 23 - What is the apparent power of the circuit in...Ch. 23 - What is the power factor of the circuit in...Ch. 23 - How many degrees are the voltage and current out...
Ch. 23 - You are an electrician working in a plant. A...Ch. 23 - The circuit shown in Figure 23-2 is connected to a...Ch. 23 - The circuit is connected to a 400-Hz line with an...Ch. 23 - The circuit is connected to a 60-Hz line. The...Ch. 23 - This circuit is connected to a 1000-Hz line. The...Ch. 23 - A series RLC circuit contains a 4-k resistor, an...Ch. 23 - A series RLC circuit contains a resistor with a...Ch. 23 - Is the power factor in Question 6 a leading or...Ch. 23 - A series RLC circuit contains a resistor with a...Ch. 23 - A series RLC circuit has an applied voltage of 240...Ch. 23 - A series RLC circuit is connected to a 60-Hz power...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 3-phase, 6-pole induction motor is con- nected to a 60 Hz supply. The voltage in- duced in the rotor bars is 4 V when the ro- tor is locked. If the motor turns in the same direction as the flux, calculate the approxi- mate voltage induced and its frequency: a. At 300 r/min b. At 1000 r/min c. At 1500 r/minarrow_forwardMake a drawing of the magnetic field cre- ated by a 3-phase, 12-pole induction motor. How can we change the direction of rota- tion of a 3-phase induction motor?arrow_forwardDescribe the principle of operation of a lin- ear induction motor.arrow_forward
- Name the principal components of an in- duction motor. Explain how a revolving field is set up in a 3-phase induction motor.arrow_forwardAnswer all the questions (a) How much power is the wind farm generating? (b) How much power is the solar farm generating? (c) Find the power delivered to the AC motor. (d) If the AC motor requires at least 45 kW of power, is the system able to provide that power? If not, how many additional series PV modules should be added to each string (we want to keep the same number of modules in each string)? If so, how many modules can be removed from each string while still meeting the requirements?arrow_forwardAn open-circuit voltage of 240 V appears across the slip-rings of a wound-rotor in- duction motor when the rotor is locked. The stator has 6 poles and is excited by a 60 Hz source. If the rotor is driven by a variable-speed dc motor, calculate the open-circuit voltage and frequency across the slip-rings if the dc motor turns a. At 600 r/min, in the same direction as the rotating field b. At 900 r/min, in the same direction as the rotating field c. At 3600 r/min, opposite to the rotating fieldarrow_forward
- If we double the number of poles on the stator of an induction motor, will its syn- chronous speed also double? The rotor of an induction should never be locked while full voltage is being applied to the stator. Explain. Why does the rotor of an induction motor turn slower than the revolving field?arrow_forwarda. Calculate the synchronous speed of a 3-phase, 12-pole induction motor that is excited by a 60 Hz source. b. What is the nominal speed if the slip at full-load is 6 percent?arrow_forwardA 3-phase, 75 hp, 440 V induction motor has a full-load efficiency of 91 percent and a power factor of 83 percent. Calculate the nominal current per phase.arrow_forward
- Please answer all the questions a) What is the minimum required transformer rating for each transformer in kVA? b) Find the voltage required at Bus 1. c) The loadcentre is to be powered by PV panels that have the same I-V curve (ISC = 120 A, VOC = 60 V). Identify the configuration that uses the minimum number of panels to provide enough power to Bus 1. You can assume that the inverter converts the power at 95% efficiency and requires V DC input to generate the same VRMS AC output.arrow_forwardWhat happens to the rotor speed and rotor current when the mechanical load on an in- duction motor increases? Would you recommend using a 50 hp in- duction motor to drive a 10 hp load? Explain. Give two advantages of a wound-rotor mo- tor over a squirrel-cage motor. Both the voltage and frequency induced in the rotor of an induction motor decrease as the rotor speeds up. Explain.arrow_forwardPlease provide explainations and detailed working. thank youarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningElectricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage LearningPower System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning

Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
What is a Thyristor? - A Galco TV Tech Tip; Author: GalcoTV;https://www.youtube.com/watch?v=LBb_Qz7J3zA;License: Standard Youtube License