Concept explainers
(a)
Interpretation: The number of Protons, electrons, Neutrons for each atom is identified.
Concept Introduction:
Conversion of atoms to moles:
Mass number: The sum of protons and neutrons gives the value of
Nuclear stability: The nucleus is composed of protons and neutrons. The strongest nuclear force binds the particles tightly. Though the protons repel each other due to no attraction between similar charges, possess short-range attractions made the attraction possible between proton and proton, proton and neutron, neutron and neutron.
The stability of any element is determined by the difference between coulombic repulsion and the short-range attraction. If repulsion outweighs the attraction, the disintegration of nucleus occurs by producing the daughter nuclides. If the attractive forces prevail, the nucleus is stable.
(b)
Interpretation: The number of Protons, electrons, Neutrons for each atom is identified.
Concept Introduction:
Conversion of atoms to moles:
Mass number: The sum of protons and neutrons gives the value of atomic mass.
Nuclear stability: The nucleus is composed of protons and neutrons. The strongest nuclear force binds the particles tightly. Though the protons repel each other due to no attraction between similar charges, possess short-range attractions made the attraction possible between proton and proton, proton and neutron, neutron and neutron.
The stability of any element is determined by the difference between coulombic repulsion and the short-range attraction. If repulsion outweighs the attraction, the disintegration of nucleus occurs by producing the daughter nuclides. If the attractive forces prevail, the nucleus is stable.
(c)
Interpretation: The number of Protons, electrons, Neutrons for each atom is identified.
Concept Introduction:
Conversion of atoms to moles:
Mass number: The sum of protons and neutrons gives the value of atomic mass.
Nuclear stability: The nucleus is composed of protons and neutrons. The strongest nuclear force binds the particles tightly. Though the protons repel each other due to no attraction between similar charges, possess short-range attractions made the attraction possible between proton and proton, proton and neutron, neutron and neutron.
The stability of any element is determined by the difference between coulombic repulsion and the short-range attraction. If repulsion outweighs the attraction, the disintegration of nucleus occurs by producing the daughter nuclides. If the attractive forces prevail, the nucleus is stable.
(d)
Interpretation: The number of Protons, electrons, Neutrons for each atom is identified.
Concept Introduction:
Conversion of atoms to moles:
Mass number: The sum of protons and neutrons gives the value of atomic mass.
Nuclear stability: The nucleus is composed of protons and neutrons. The strongest nuclear force binds the particles tightly. Though the protons repel each other due to no attraction between similar charges, possess short-range attractions made the attraction possible between proton and proton, proton and neutron, neutron and neutron.
The stability of any element is determined by the difference between coulombic repulsion and the short-range attraction. If repulsion outweighs the attraction, the disintegration of nucleus occurs by producing the daughter nuclides. If the attractive forces prevail, the nucleus is stable.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Chemistry: Atoms First
- The table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which is the most brittle and which is the most tough (or most resistant). Breaking strength Elastic modulus Material Yield strength Tensile strength Breaking strain A (MPa) 415 (MPa) (MPa) (GPa) 550 0.15 500 310 B 700 850 0.15 720 300 C Non-effluence fracture 650 350arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardMaterials. The following terms are synonyms: tension, effort and stress.arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which material will be the most ductile and which the most brittle. Material Yield strength Tensile strength Breaking strain Breaking strength Elastic modulus (MPa) (MPa) (MPa) (GPa) A 310 340 0.23 265 210 B 100 120 0.40 105 150 с 415 550 0.15 500 310 D 700 850 0.14 720 210 E - Non-effluence fracture 650 350arrow_forward
- Please correct answer and don't used hand raiting and don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardConsider the following Figure 2 and two atoms that are initially an infinite distance apart, x =00, at which point the potential energy of the system is U = 0. If they are brought together to x = x, the potential energy is related to the total force P by dU dx = P Given this, qualitatively sketch the variation of U with x. What happens at x=x? What is the significance of x = x, in terms of the potential energy? 0 P, Force 19 Attraction Total Repulsion x, Distance Figure 2. Variation with distance of the attractive, repulsive, and total forces between atoms. The slope dP/dx at the equilibrium spacing xe is proportional to the elastic modulus E; the stress σb, corresponding to the peak in total force, is the theoretical cohesive strength.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning