Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 23, Problem 18PCE
A single
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A V = 36 mV battery is connected to a single turn loop of dimensions a 15 cm by b = 8 cm has a resistance
of R = 25.5 2. The loop is placed in a uniform magnetic field which is perpendicular to the plane of the
loop. If the magnetic field is increasing at a rate of 0.9 T/sec, what is the magnitude and direction of the
current in the circuit?
B
x
x
V T
X
X
www
The magnitude, I =
x
X
x
R
X
The direction: Select an answer
X
X x
x
x
X
Units Select an answer ✓
X
x
X
x
хх
The area of a 200 turn coil is 0.02 m². The resistance of the coil is 64 2. If the coil is oriented with its surface perpendicular to a magnetic
field B, at what rate in T/s should the magnitude of B change to induce a current of 0.25 A in the coil?
320 T/s
800 T/s
4 T/s
2 T/s
0.5 T/s
A V = 30 mV battery is connected to a single turn loop of dimensions a = 13 cm by b = 12.5 cm has a resistance of R = 15.5 Ω. The loop is placed in a uniform magnetic field which is perpendicular to the plane of the loop. If the magnetic field is increasing at a rate of 1.4 T/sec, what is the magnitude and direction of the current in the circuit?
Chapter 23 Solutions
Physics (5th Edition)
Ch. 23.1 - Which of the following situations results in an...Ch. 23.2 - What is the angle in the definition of magnetic...Ch. 23.3 - In system 1 the magnetic flux through a coil with...Ch. 23.4 - A metal ring moves to the right from a field-free...Ch. 23.5 - Suppose the speed of the rod in Example 23-8 is...Ch. 23.6 - Consider the electric generator shown in Figure...Ch. 23.7 - Prob. 7EYUCh. 23.8 - Consider the circuit shown in Figure 23-25. (a) Is...Ch. 23.9 - Is more energy stored in an inductor by doubling...Ch. 23.10 - If a transformer doubled both the voltage and the...
Ch. 23 - Explain the difference between a magnetic field...Ch. 23 - A metal ring with a break in its perimeter is...Ch. 23 - Many equal-arm balances have a small metal plate...Ch. 23 - Figure 23-29 shows a vertical iron rod with a wire...Ch. 23 - A metal rod of resistance R can slide without...Ch. 23 - Recently, NASA tested a power generation system...Ch. 23 - Explain what happens when the angular speed of the...Ch. 23 - A 0 085-T magnetic field passes through a circular...Ch. 23 - A uniform magnetic field of 0.0250 T points...Ch. 23 - A magnetic field is oriented at an angle of 67 to...Ch. 23 - MRI Solenoid The magnetic field produced by an MRI...Ch. 23 - Find the magnitude of the magnetic flux through...Ch. 23 - At a certain location, the Earths magnetic field...Ch. 23 - A solenoid with 385 turns per meter and a diameter...Ch. 23 - A single-turn square loop of side L is centered on...Ch. 23 - A bar magnet is inside a closed cubical box...Ch. 23 - A 0.65-T magnetic field is perpendicular to a...Ch. 23 - Prob. 11PCECh. 23 - Figure 23-33 shows the magnetic flux through a...Ch. 23 - One type of antenna for receiving AM radio signals...Ch. 23 - A wire loop is placed in a magnetic field that is...Ch. 23 - Figure 23-35 shows four different situations in...Ch. 23 - Predict/Calculate The magnetic flux through a...Ch. 23 - Prob. 17PCECh. 23 - A single conducting loop of wire has an area of...Ch. 23 - The area of a 120-turn coil oriented with its...Ch. 23 - An emf is induced in a conducting loop of wire...Ch. 23 - A magnetic field increases from 0 to 0.55 T in 16...Ch. 23 - Predict/Explain A metal ring is dropped into a...Ch. 23 - Predict/Explain A metal ring is dropped into a...Ch. 23 - Predict/Explain Figure 23-37 shows two metal disks...Ch. 23 - Predict/Explain (a) As the solid metal disk in...Ch. 23 - A bar magnet with its north pole pointing downward...Ch. 23 - A Wire Loop and a Magnet A loop of wire is dropped...Ch. 23 - Suppose we change the situation shown in Figure...Ch. 23 - Figure 23-39 shows a current-carrying wire and a...Ch. 23 - Consider the physical system shown in Figure...Ch. 23 - Prob. 31PCECh. 23 - Prob. 32PCECh. 23 - Prob. 33PCECh. 23 - A conducting rod slides on two wires in a region...Ch. 23 - A metal rod 0.95 m long moves with a speed of 2.4...Ch. 23 - Airplane emf A Boeing KC-135A airplane has a...Ch. 23 - Predict/Calculate Figure 23-42 shows a...Ch. 23 - Referring to part (a) of Problem 37, (a) find the...Ch. 23 - (a) Find the current that flows in the circuit...Ch. 23 - Suppose the mechanical power delivered to the rod...Ch. 23 - Prob. 41PCECh. 23 - A rectangular coil 25 cm by 45 cm has 150 turns....Ch. 23 - A 1 6-m wire is wound into a coil with a radius of...Ch. 23 - Shake Flashlight A shake flashlight uses the...Ch. 23 - Predict/Calculate A circular coil with a diameter...Ch. 23 - A generator is designed to produce a maximum emf...Ch. 23 - Prob. 47PCECh. 23 - Prob. 48PCECh. 23 - Prob. 49PCECh. 23 - Prob. 50PCECh. 23 - Prob. 51PCECh. 23 - Prob. 52PCECh. 23 - Prob. 53PCECh. 23 - A simple RL circuit includes a 0.125-H inductor....Ch. 23 - Prob. 55PCECh. 23 - Prob. 56PCECh. 23 - Prob. 57PCECh. 23 - Prob. 58PCECh. 23 - Prob. 59PCECh. 23 - Prob. 60PCECh. 23 - Prob. 61PCECh. 23 - Alcator Fusion Experiment In the Alcator fusion...Ch. 23 - Superconductor Energy Storage An engineer proposes...Ch. 23 - Prob. 64PCECh. 23 - Prob. 65PCECh. 23 - Prob. 66PCECh. 23 - Transformer 1 has a primary voltage Vp and a...Ch. 23 - The electric motor in a toy train requires a...Ch. 23 - Predict/Calculate A disk drive plugged into a...Ch. 23 - A transformer with a turns ratio...Ch. 23 - A neon sign that requires a voltage of 11,000 V is...Ch. 23 - A step-down transformer produces a voltage of 6.0...Ch. 23 - A step-up transformer has 30 turns on the primary...Ch. 23 - CE Predict/Explain An airplane flies level to the...Ch. 23 - CE You hold a circular loop of wire at the north...Ch. 23 - Prob. 76GPCh. 23 - Interstellar Magnetic Field The Voyager I...Ch. 23 - Prob. 78GPCh. 23 - BIO Electrognathography Computerized jaw tracking,...Ch. 23 - A rectangular loop of wire 24 cm by 72 cm is bent...Ch. 23 - Consider a rectangular loop of wire 6.8 cm by 9.2...Ch. 23 - Predict/Calculate A car with a vertical radio...Ch. 23 - The rectangular coils in a 355-tum generator are...Ch. 23 - A cubical box 22 cm on a side is placed in a...Ch. 23 - BIO MRI Scanner An MRI scanner is based on a...Ch. 23 - BIO Transcranial Magnetic Stimulation Transcranial...Ch. 23 - A magnetic field with the time dependence shown in...Ch. 23 - Prob. 88GPCh. 23 - Prob. 89GPCh. 23 - Prob. 90GPCh. 23 - BIO Blowfly Maneuvers Suppose the fly described in...Ch. 23 - Prob. 92GPCh. 23 - Predict/Calculate A single-turn rectangular loop...Ch. 23 - Prob. 94GPCh. 23 - Prob. 95GPCh. 23 - Loop Detectors on Roadways Smart traffic lights...Ch. 23 - A car drives onto a loop detector and increases...Ch. 23 - A truck drives onto a loop detector and increases...Ch. 23 - Loop Detectors on Roadways Smart traffic lights...Ch. 23 - Referring to Conceptual Example 23-6 Suppose the...Ch. 23 - Referring to Conceptual Example 23-6 Suppose the...Ch. 23 - Referring to Example 23-8 (a) What external force...Ch. 23 - Predict/Calculate Referring to Example 23-8...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What generally happens to the rate of a chemical reaction with increasing temperature?
Conceptual Integrated Science
6. A particle starts from x0 = 10 m at t = 0 s and moves with the velocity graph shown in FIGURE EX2.6.
a. Do...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Use the exponent rules to simplify the following expressions:
2.
College Physics (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A circular loop of wire with a radius of 4.0 cm is in a uniform magnetic field of magnitude 0.060 T. The plane of the loop is perpendicular to the direction of the magnetic field. In a time interval of 0.50 s, the magnetic field changes to the opposite direction with a magnitude of 0.040 T. What is the magnitude of the average emf induced in the loop? (a) 0.20 V (b) 0.025 V (c) 5.0 mV (d) 1.0 mV (e) 0.20 mVarrow_forwardA square loop whose sides are 6.0-cm long is made with copper wire of radius 1.0 mm. If a magnetic field perpendicular to the loop is changing at a rate of 5.0 mT/s, what is the current in the loop?arrow_forwardA flat loop of wire consisting of a single turn of cross-sectional area 8.00 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 2.50 T in 1.00 s. What is the resulting induced current if the loop has a resistance of 2.00 ?arrow_forward
- How many turns must be wound on a flat, circular coil of radius 20 cm in order to produce a magnetic field of magnitude 4.0105 T at the center of the coil when the current through it is 0.85 A?arrow_forwardWhy is the following situation impossible? A conducting rectangular loop of mass M = 0.100 kg, resistance R = 1.00 , and dimensions w = 50.0 cm by = 90.0 cm is held with its lower edge just above a region with a uniform magnetic field of magnitude B = 1.00 T as shown in Figure P30.34. The loop is released from rest. Just as the top edge of the loop reaches the region containing the field, the loop moves with a speed 4.00 m/s. Figure P30.34arrow_forwardA metal bar of length 25 cm is placed perpendicular to a uniform magnetic field of strength 3 T. (a) Determine the induced emf between the ends of the rod when it is not moving, (b) Determine the emf when the rod is moving perpendicular to its Length and magnetic field with a speed of 50 cm/s.arrow_forward
- A circular loop of wire of resistance R = 0.500 and radius r = 8.00 cm is in a uniform magnetic field directed out of the page as in Figure P31.54. If a clockwise current of I = 2.50 mA is induced in the loop, (a) is the magnetic field increasing or decreasing in time? (b) Find the rate at which the field is changing with time. Figure P31.54arrow_forwardConsider the apparatus shown in Figure P30.32: a conducting bar is moved along two rails connected to an incandescent lightbulb. The whole system is immersed in a magnetic field of magnitude B = 0.400 T perpendicular and into the page. The distance between the horizontal rails is = 0.800 m. The resistance of the lightbulb is R = 48.0 , assumed to be constant. The bar and rails have negligible resistance. The bar is moved toward the right by a constant force of magnitude F = 0.600 N. We wish to find the maximum power delivered to the lightbulb. (a) Find an expression for the current in the lightbulb as a function of B, , R, and v, the speed of the bar. (b) When the maximum power is delivered to the lightbulb, what analysis model properly describes the moving bar? (c) Use the analysis model in part (b) to find a numerical value for the speed v of the bar when the maximum power is being delivered to the lightbulb. (d) Find the current in the lightbulb when maximum power is being delivered to it. (e) Using P = I2R, what is the maximum power delivered to the lightbulb? (f) What is the maximum mechanical input power delivered to the bar by the force F? (g) We have assumed the resistance of the lightbulb is constant. In reality, as the power delivered to the lightbulb increases, the filament temperature increases and the resistance increases. Does the speed found in part (c) change if the resistance increases and all other quantities are held constant? (h) If so, does the speed found in part (c) increase or decrease? If not, explain. (i) With the assumption that the resistance of the lightbulb increases as the current increases, does the power found in part (f) change? (j) If so, is the power found in part (f) larger or smaller? If not, explain. Figure P30.32arrow_forwardYou wish to move a rectangular loop of wire into a region of uniform magnetic field at a given speed so as to induce an emf in the loop. The plane of the loop must remain perpendicular to the magnetic field lines. In which orientation should you hold the loop while you move it into the region of magnetic field so as to generate the largest emf? (a) with the long dimension of the loop parallel to the velocity vector (b) with the short dimension of the loop parallel to the velocity vector (c) either way because the emf is the same regardless of orientationarrow_forward
- Consider the system pictured in Figure P28.26. A 15.0-cm horizontal wire of mass 15.0 g is placed between two thin, vertical conductors, and a uniform magnetic field acts perpendicular to the page. The wire is free to move vertically without friction on the two vertical conductors. When a 5.00-A current is directed as shown in the figure, the horizontal wire moves upward at constant velocity in the presence of gravity. (a) What forces act on the horizontal wire, and (b) under what condition is the wire able to move upward at constant velocity? (c) Find the magnitude and direction of the minimum magnetic Field required to move the wire at constant speed. (d) What happens if the magnetic field exceeds this minimum value? Figure P28.26arrow_forwardA magnetic field directed into the page changes with time according to B = 0.030 0t2 + 1.40, where B is in teslas and t is in seconds. The field has a circular cross section of radius R = 2.50 cm (see Fig. P23.28). When t = 3.00 s and r2 = 0.020 0 m, what are (a) the magnitude and (b) the direction of the electric field at point P2?arrow_forwardA conducting single-turn circular loop with a total resistance of 5.00 is placed in a time-varying magnetic field that produces a magnetic flux through the loop given by B = a + bt2 ct3, where a = 4.00 Wb, b = 11.0 Wb/s2, and c = 6.00 Wb/s3. B is in webers, and t is in seconds. What is the maximum current induced in the loop during the time interval t = 0 to t = 3.50 s?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY